

Achille Stocchi (LAL/Orsay)

1

Flavour Physics in the *Standard Model* (SM) in the quark sector:

In the Standard Model, charged weak interactions among quarks are codified in a 3 X 3 unitarity matrix : the **CKM Matrix**.

The existence of this matrix conveys the fact that the quarks which participate to weak processes are a linear combination of mass eigenstates

The fermion sector is poorly constrained by SM + Higgs Mechanism mass hierarchy and CKM parameters

The mass is a LEFT-RIGHT coupling and has to respect the gauge invariance $SU(2)_L \times U(1)_Y$

$$\mathbf{W}_{L} \phi \mathbf{W}_{R} \qquad \phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = \mathbf{1}$$

$$\mathbf{W}_{L} \phi \mathbf{W}_{R} \qquad \phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = \mathbf{1}$$

$$\mathbf{W}_{L} \phi \mathbf{W}_{R} \qquad \phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = \mathbf{1}$$

$$\mathbf{W}_{L} \phi \mathbf{W}_{R} \qquad \phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = \mathbf{1}$$

$$\mathbf{W}_{L} \phi \mathbf{W}_{R} \qquad \phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = \mathbf{1}$$

$$\mathbf{W}_{L} \phi \mathbf{W}_{R} \qquad \phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = \mathbf{1}$$

$$\mathbf{W}_{L} \phi \mathbf{W}_{R} \qquad \phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = \mathbf{1}$$

$$\mathbf{W}_{L} \phi \mathbf{W}_{R} \qquad \phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = \mathbf{1}$$

$$\mathbf{W}_{L} \phi \mathbf{W}_{R} \qquad \phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = \mathbf{1}$$

$$\mathbf{W}_{L} \phi \mathbf{W}_{R} \qquad \phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = \mathbf{1}$$

$$\mathbf{W}_{L} \phi \mathbf{W}_{R} \qquad \phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = \mathbf{1}$$

$$\mathbf{W}_{L} \phi \mathbf{W}_{R} \qquad \phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = \mathbf{1}$$

$$\mathbf{W}_{L} \phi \mathbf{W}_{R} \qquad \phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = \mathbf{I}$$

$$\mathbf{W}_{R} \qquad \phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = \mathbf{I}$$

$$\mathbf{W}_{R} \qquad \phi = \begin{pmatrix} \phi^{+} \\ \phi^{-} \\ \psi^{-} \\$$

Generally for a rotation 3x3 matrix in complex plane

3angles + 1 « irreducuble » phase

The only responsible of CP violation in SM

The Unitarity Triangle

The CKM is unitary $VV^{\dagger} = V^{\dagger}V = 1$

The non-diagonal elements of the matrix products correspond to

6 triangle equations

$$V_{ud}^{*} V_{us} + V_{cd}^{*} V_{cs} + V_{td}^{*} V_{ts} = 0 \qquad \lambda \lambda \lambda^{5}$$

$$V_{ub}^{*} V_{ud} + V_{cb}^{*} V_{cd} + V_{tb}^{*} V_{td} = 0 \qquad \lambda^{3} \lambda^{3} \lambda^{3}$$

$$V_{us}^{*} V_{ub} + V_{cs}^{*} V_{cb} + V_{ts}^{*} V_{tb} = 0 \qquad \lambda^{4} \lambda^{2} \lambda^{2}$$

$$V_{ud}^{*} V_{td} + V_{us}^{*} V_{ts} + V_{ub}^{*} V_{tb} = 0 \qquad \lambda^{3} \lambda^{3} \lambda^{3}$$

$$V_{td}^{*} V_{cd} + V_{ts}^{*} V_{cs} + V_{tb}^{*} V_{cb} = 0 \qquad \lambda^{4} \lambda^{2} \lambda^{2}$$

$$V_{td}^{*} V_{cd} + V_{ts}^{*} V_{cs} + V_{tb}^{*} V_{cb} = 0 \qquad \lambda^{4} \lambda^{2} \lambda^{2}$$

$$V_{ud}^{*} V_{cd} + V_{ts}^{*} V_{cs} + V_{tb}^{*} V_{cb} = 0 \qquad \lambda \lambda \lambda^{5}$$

$$\overline{AB} = \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} = \sqrt{(1-\overline{\rho})^2 + \overline{\eta}^2} = \frac{1}{\lambda} \left| \frac{V_{td}}{V_{cb}} \right| \sim \frac{1}{\lambda} \left| \frac{V_{td}}{V_{ts}} \right|$$
$$\overline{AC} = \frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} = \sqrt{\overline{\rho}^2 + \overline{\eta}^2} = \left(1 - \frac{\lambda^2}{2}\right) \frac{1}{\lambda} \left| \frac{V_{ub}}{V_{cb}} \right|$$

$$\beta = \arg\left(\frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*}\right) = \operatorname{atan}\left(\frac{\overline{\eta}}{(1-\overline{\rho})}\right)$$

$$\gamma = \arg\left(\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right) = \operatorname{atan}\left(\frac{\overline{\eta}}{\overline{\rho}}\right)$$

$$\alpha + \beta + \gamma = \pi$$

6

How to fit the UT parameters and fit new physics

The Standard UTfit

Parameter	Value	Error(Gaussian)	Error(Flat)
λ	0.2258	0.014	
V _{cb} (×10 ⁻³) (excl.)	41.4	2.1	
V _{cb} (×10 ⁻³) (incl.)	41.6	0.7	0.6
V _{ub} (×10 ⁻⁴) (excl.)	38.0	2.7	4.7
V _{ub} (×10 ⁻⁴) (incl.)	43.9	4.4	-
∆m _d (ps⁻¹)	0.502	0.006	
∆m _s (ps⁻¹)	> 14.5 ps ⁻¹ 95%CL	sens.18.3 ps ⁻¹ 95% CL	
m _t (GeV)	165.0	3.9	
m _c (GeV)	1.3		0.1
m _b (GeV)	4.21	0.08	-
$f_{B_s}\sqrt{\hat{B}_{B_s}}$ (MeV)	276	38	-
ξ	1.24	0.04	0.06
В _к	0.79	0.06	0.09
ε _κ (10 ⁻³)	2.280	0.013	-
sin2β	0.687	0.032	

Some discrepancy wrt past

Tree Processes could be used to « discover » NP : comparing «direct» (which are NP free) and «indirect» (where there is NP contributions) measurements of the same quantity.

Other piece showing that :we are probably beyond the era of « alternatives» to the CKM picture. NP should appear as «corrections» to the CKM picture

All available information together

15

Fit with NP independent variables

If we use only Tree level processes -which can be assumed to be NP free-

(similar plot in Botella et al. hep-ph/0502133)

Fit in a NP model independent approach Δm^2

....

$$C_{d}^{EXP} = C_{q} \Delta m_{d}^{SM}$$

$$\Delta F=2$$

17

Parametrizing NP physics in $\Delta F=2$ processes

$$C_{q}e^{2i\varphi_{d}} = \frac{Q_{\Delta B=2}^{NP}}{Q_{\Delta B=2}^{SM}}$$

$$A_{CP}(J/\Psi K^0) = \sin(2\beta + 2\phi_d)$$

$$\alpha^{EXP} = \alpha^{SM} - \phi_d$$
$$|\varepsilon_K|^{EXP} = C_{\varepsilon} |\varepsilon_K|^{SM}$$

Soares, Wolfenstein PRD47; Deshpande,Dutta, Oh PRL77; Silva, Wolfenstein PRD55; Cohen et al. PRL78; Grossman, Nir, Worah PLB407; Ciuchini et al. @ CKM Durham

		ρ,η	C_d, ϕ_d	C _{eK}	C_s, ϕ_s	
	V_{ub}/V_{cb}	Х				
nstraints	Δm_d	Х	Х			
	ε _κ	Х		X		5 new free parameters $C_s, \phi_s = B_s \text{ mixing}$
	ACP (J/Ψ K)	Х	Х			
C_0	α (ρρ,ρπ,ππ)	Х	Х			C_d, φ_d B_d mixing C_{sK} K mixing
	γ (DK)	Х				ск
Not yet available	Δm_s				Х	
	$ACP\;(J/\Psi\;\phi)$	~X			Х	
	γ (D _s K)	Х			Х	

Today : fit possible with 6 contraints and

5 free parameters $(\rho, \eta, C_d, \phi_d, C_{\epsilon K})$

Using

 $A_{\rm SL} \equiv \frac{\Gamma(\bar{B}^0 \to \ell^+ X) - \Gamma(B^0 \to \ell^- X)}{\Gamma(\bar{B}^0 \to \ell^+ X) + \Gamma(B^0 \to \ell^- X)} \quad A_{SL} = -\operatorname{Re}\left(\frac{\Gamma_{12}}{M_{12}}\right)^{SM} \frac{\sin 2\phi_d}{C_d} + \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)^{SM} \frac{\cos 2\phi_d}{C_d} \quad \text{Laplace et al., PRD65} \quad 18$

NP in $\Delta B=2$ and $\Delta S=2$ could be up to 50% wrt SM only if has the same phase of the SM

WHY IT IS IMPORTANT TO GO ON....

TWO POSSIBLE SCENARIOS

A crucial test the measurement of Δm_s

 Δm_s will be precisely measured as soon as it will be measured ~ $\sigma(\Delta m_s) < 1 \text{ps}^{-1}$

without using the limit on Δm_s

It is crucial to improve the precision on the Lattice quantities (f_{Bs},ξ) to have a better 22 prediction for Δm_s to be compared with the future measurement

CKM Matrix in \leq 2010-where we will be

We have supposed that

- **B Factories** will collect 2ab⁻¹
- two years data taking at LHCb (4fb⁻¹)

Οι	utputs		
$sin(2\beta)$	0.694 ± 0.012		
$sin(2\alpha)$	-0.543 ± 0.093		
γ[°]	51.7 ± 3.0		
ρ	0.240 ± 0.017		
η	0.307 ± 0.010		

CKM2010

Inputs

In the « sad » hypotesis the SM still work in 2010....

CKM2010

24

VERY IMPORTANT in 2010 : same and impressive precision on b \rightarrow d and b \rightarrow s transitions

We cannot stop before having doing that !!

Conclusions

UT*fits* are in a mature age with recent precise measurement of UT sides and angles

The SM CKM picture of CP violation and FCNC is strongly supported by data

-50

Probability density

Generic NP in the $b \rightarrow d$ start to be quite constrained

At least in this sector, we are beyond the alternative

to CKM picture, and we should look at « corrections ».

We need precision measurements to test NP and to push the NP scale in interesting ranges and to play the complementarity at LHC

What about the $b \rightarrow s$ sector ? Still large room for NP. LHCb plays the central role on it.

 $A_{FB}(X_{s}l^{+}l^{-}), A_{FB}(K^{*}\gamma)$ $\Delta m_s B_s \rightarrow J/\psi \phi B_s \rightarrow \mu \mu$ 25

UT_{fit}

50

ф_{в,}