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1, Contemporary and new energy

conservation equation derivation

First pr 1nc1ple of thermodynamics:

g{ [ ép\/ v+e,. d‘v— [ (tov+q,, |ds+ [[b\/ﬂ}dv

Q! oQ 93
Internal energy material derivative formulation:

DQ [e.dv= [(o:d=Veq+r| v
Q Q

The energy conservation equation has to work properly
In the following three different cases:

1, All thermal contributions are equal to zero
2, All mechanical contributions are equal to zero

3,-Neither.thermal nor.mechanical terms.are.equal.to.zero
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are equal to zero

First principle of thermodynamics:

gt 1pv v+e, |dv= | tevds+ [ bevdv
QL= 0 Q)
Internal energy material derivative formulation:
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ontributions are equal to zero

First principle of thermodynamics:

D [e.dv= [ q,ds+ [rdv
( Q

Dt « )
Internal energy material derivative formulation: |

D . e.dv= [ (-Veq+r|dv

DfQ O
q=—K-VT
q-n=-—4g,

I“(ter back substitution we arrive at the following equation:

[ (—Veq+ridv= [ [-Veq+r|dv
| SR |

0=0

Gauss’ theorem:

ands = [ (Vea)dv
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ase 3. Neither mechanical nor
hermal terms are equal to zero

After back substitution for the internal energy material
derivative formulation we arrive at the mechanical
energy conservation equation:

Mechanical energy conservation equation:

D .1

Drgj}qpv—dw | 6:ddv= | tevdv+ | bevdy
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First principle of thermodynamics is equivalent with the
mechanical energy conservation equation and is
Independent of all thermal energy contributions
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The new energy conservation

equation aerivation

W=y, +,=0
Wy =Ve(D+Ve6— pV|=Dbev+Ve(6eV)—6:(VV)— pvev=0
Wy =(Veq)+1r— pcT =0

=K-(VT) Ve(aa)=aV-a+a-Va
e first principle of thermodynamics of a body without

Imperature gradient:
| [pv v+ﬁ.d+mT]dv— [ (tv+gy,|ds+ [(bev+r|dy
Q | _
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he first principle of thermodynamics of-a body with

emperature gradient:

MR 5TE v+ X ST O+ [ SThovdv+ [ STewvds+ | 5Tq,ds+ [ STrdv=
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he physical meaning of the new terms

coming from the usage of the
(3’ ] [ ] u
L( mathematical identity
. | Force equilibrium in CM: Force equilibrium in FEM:
[y __ . Sw,, = Srsb+Vees— p¥|=
Ef b—i_i sl =beSr+Ve(6+51r)—06:(VSr)— pvedr=0
c.n—t sen—t
. After integration over the volume of the body:
|- _
| [bdv+ | ﬁT'ndﬂ—j pvdv=0 (bedrdv+ | Sretda— [ 6:(VSr)dv— [ pvedrdv=0

Force equilibrium of a deformable body

'+ Force equilibrium of a rigid
¥/ body

aL asnds = (L(V a)dv 1 ATends= [ (VeA)dv o VoAl ea)=(V-A)a+A:(Va)



The physical meaning of the new
terms coming from the usage of the

mathematical identity 2
Heat equation in CM:

Heat equation in FEM:

1i,-‘g = (—?-q)+ r_pgT =0 Olh ng =01 I:(—v-q)—k r—pCT] —
q=—K-(VT) =(VST }q—V(8Tq)+S8Tr—ST pcT =0
q-n = _g” ] , . ;

q*n=-—4g,
After integration over the volume of the body:

[ g,da+ [ rdv— [ pcTdv [ 8Tq,da+ [ STrdv+ [ (VST yqdv— | ST pcTdv=0
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ody without a temperature

Body with nonzero temperature
gradient

gradient

Ve(aa)=aVea+a-Va 51; ands = (L(V'ﬂ)dv



2, Material model
) Modified NolHKH model for large strain / large

deformation cyclic plasticity of metals:

2 I Yield surface: r=¢ -0 -R<0
> g ¥
aa 3 . .
" =, —(Z-X):(E-X - ,. .
i \/2(' )+ ) 6=R «:R X=R’:X:R

=+ |NolH rule for isotropic hardening:
3 R =Q[1—e':"3'"3]

/sNIoKH rule for kinematic hardening for large strain formulation:

X=C_, :d"-y(&")X¢" Green — Naghdi objective rate

rr(};i ) =10 R.E;E-Rf =X - X -X.QF =C g a7~y | XEF
—_ P
f v __ _ . |:—|:.=z":|
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Jaumann objective rate: - - .
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Green — Naghdi?:?dbjectiv‘_e_;. rate:

Y 0s-60" | &F | QN =ROHRT(1H =
|II -]II i | 4 _. R D ~

Equivalence condition:

Riri=W.Ri)
IC: Rr=1,)=R,

Exact solution:
R(r)=expl(r=1,)WIR, 25 ,-




and endpoint configuration

1 1 1

H+— ﬁj‘ Ht— -
R * =exp TW 2 R" R™ =exp|AtW 2 |R”
Rodrigues formula =

Let X be a skew-symmetric tensor { \ =-X"). 'l'hcﬁ
0 =exp|X]

15 a proper orthogonal tensor ( a rotation ) and the exponential map has the following
representation known as Rodngues” formula:

|n[||1|] 1 hln|,~ ~L2)
N2 N

exp|X]=1+4

where
X 15 the axial vector of X . If HI._ na forany odd », then we have the
additional equivalent representation:




3, Numerical implementation

1, Fully coupled thermal-structural problem using large
strain / large deflection formulation with updated
L agrange method.

2, Eight node 3D solid element with linear shape function
In element matrices formulation

3, Full numerical integration in element matrices
calculation

4, Proper linearization = no simplifications in gradient,
element matrix, etc. formulation




Table 1: Material properties

r ¢ =15.07/(kg K #=03
._ Kooy ey = 5000/ (- K) by =03

Gy @y, @, =0, 000012 &' a, = 2500000 Pg
h=0.57 (m’ k) < =100000.0Pa
: _ b - 3':'
j;ufk =00K

o = 7800.0kz [ m"
£ = 2100000.0 P

o = 550000.0 Pa
apel
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6, Conclusions

1, The derived energy conservation equation is complete
with respect to the.thermal and mechanical energy
contributions and the author believes that it represents a
more accurate solution of fully coupled thermal structural
problems, mainly in fast / ultra fast thermoelasticity /
thermoplasticity. However this assertion still needs to be
proved experimentally.

2, Since on a 32 bit personal computer (PC) there was a
need to decrease some material values to prevent the
global stiffness matrix from being nearly singular, in order
to use real material properties, these analyses will need
a 64 bit PC.







