Semiconductor Detectors applications in basic science and industry <u>OUTLINE Part II</u>

- Semiconductors based on sideward depletion
 (a) the SDD with integrated FET
 (b) the pnCCD
 - (c) the CDD
 - (d) the DEPFET (active pixel sensor)
- 2. Avalanche amplifiers
- 3. Summary and Conclusion

Semiconductors as detector and electronics material

- 1. Semiconductors: $E_{Gap} \approx 1 3 \text{ eV}$
 - \rightarrow small leakage currents
 - \rightarrow low noise, operation @ r.t.
- 2. Pair creation energy: w = 2 5 eV
- 3. Density: $\rho = 2 10 \text{ g cm}^{-3}$

This leads to:

good energy resolution high spatial resolution high quantum and detection efficieny good mechanical regidity and thermal conductivity

Semiconductors equally offer:

fixed space charges high mobility of charge carriers

Istanbul, September - 8, 2005

- \rightarrow large number of signal charges per energy deposit in detector
- \rightarrow high energy loss per unit length
- \rightarrow low range of $~\delta$ electrons

Lothar Strüder MPI Halbleiterlabor, University of Siegen

 $ENC_{tot}^2 = ENC_{el}^2 + ENC_{fano}^2 + ENC_{trans}^2 + \dots$

Noise analysis

multi-parameter fit

- » extraction of
 - total capacitance C_{tot}
 - 1/f noise coeff. **a**_f
 - leakage current **I**L

independent measurement of - transconductance g_m (180 ... 250 μ S)

- A_i = filter constants (Gaussian 6th order)
- τ = shaping time constant
- q = electron charge
- a = 2/3 for FET in saturation

- fully depleted volume
- minimum capacitance of bulk contact (independent of sensitive area)

- ?? signal extraction ??
- » advanced detector concepts

Istanbul, September - 8, 2005

Lothar Strüder MPI Halbleiterlabor, University of Siegen

500

 1D position resolution by drift time measurement start trigger!!

2D position resolution by

- drift time measurement
- segmentation of the anode

Signal for varying distance

d=.25 mm

d = 1.00 mm

d=2.50 mm

d = 3.25 mm

d=3.85 mm

for varying drift field

200 ns/div

Light pulser 22000e

Istanbul, September - 8, 2005

Light pulser 22000e

d = 1.75 mm

Integrated electronics on high resistivity Silicon

$$\mathsf{ENC}^{2} = \left(\alpha \frac{2kT}{gm} C^{2}_{tot}A_{1}\right) \frac{1}{\tau} + \left[\left(2\pi a_{f}C^{2}_{tot} + \frac{b_{f}}{2\pi}\right)A_{2}\right] + \left(qI_{l} + \frac{2kT}{R_{f}}A_{3}\right)\tau$$

serial noise

low frequency noise (e.g. 1/f)

parallel noise

because of $Q = C \cdot U$ $\Delta U = \Delta Q / C$

SDDs for astrophysics and industrial applications

SDD with integrated SSJFET

Electrical Potential in a circular SDD

PNSenser

SDD properties

•Energy resolution: $\Delta E_{FWHM} = 125 \text{ eV}$ •Count rate capability: up to 10^6 cps •Peak/Background ≈ 10.000 : 1 •Quantum efficiency: > 90% @ 0.3-10 keV •Rad. hardness: > 10^{14} Mo_{K} Photonen •Operating temperature: T \approx - 10° C •Random shape and size

- •Triggersignal: $\Delta t \approx 3 5$ ns
- Antireflective coating

Applications of SDDs

<image>

SDD – Modules from
5 mm² bis 100 mm²,
1 – 61 Module/Chip

Measurements made by RÖNTEC, Berlin

SEM – image

Scanning electron microscope with separated electron and X-ray detector

Sieaen

Istanbul, September - 8, 2005

PNSenser

image^(*)

``colour –

"fingerprint" of Goethe's ink ⇒ editing of Faust I during Faust II work

experiment & figures by O. Hahn (BAM, Berlin) with portable system "artTAX" (RÖNTEC)

Mars Exploration Rover (MER)

mission profile

- 2 independent mobile landers
 "Spirit" & "Opportunity"
- arrived 04./25.01.04
- scheduled for 3 months / 600 m but still active

mission goals

- find traces of water
- investigate the geology of Mars
- prepare manned mission

PI of APXS system: R. Rieder MPI für Chemie, Mainz

PNSenser

APXS (Alpha Particle X-ray Spectrometer)

- Curium-244 a- and X-ray sources
- Silicon Drift Detector
 - » PIXE, XRF
- a-particle detectors
 - » Rutherford backscattering

similar system on board of the ROSETTA comet lander

Istanbul, September - 8, 2005

SDD X-ray spectra of Marsian samples (2004)

for comparison: X-ray spectrum of Marsian sample by Pathfinder mission (1997) equipped with **PIN-diode**

Multichannel SDD applications

scintillator readout, medical y-ray imaging

CsI(Tl), 3mm
 η = 80 % (122 keV)

• gain

15.4 el./keV

- position resolution
 0.35 mm FWHM
 - energy resolution

17.4 % FWHM

E(min) = 2 keV

experiment & figures by C. Fiorini, Politecnico di Milano

Istanbul, September - 8, 2005

PNSenser

Lothar Strüder MPI Halbleiterlabor, University of Siegen

Measurements by C. Fiorini, A. Longoni, Politecnico di Milano

Istanbul, September - 8, 2005

6000

4000

2000

Al²⁴¹Am S₇ = 3 μ s

Escape peak

Lothar Strüder MPI Halbleiterlabor, University of Siegen

Istanbul, September - 8, 2005

Lothar Strüder

backcontact

Gamma ray burst afterglow observation with XMM

GRB 031203 XMM-Newton observation

ESA, S. Vaughan (University of Leicester)

Istanbul, September - 8, 2005

PNSenser

Lothar Strüder MPI Halbleiterlabor, University of Siegen

Head-on collision of clusters of galaxis observed with XMM

model of the ``cosmic thunderstorm´

measured temperature and density maps from XMM – Newton of Abell 754

Istanbul, September - 8, 2005

XMM Summary

- Working since launch (10. Dez. 1999) without any problem.
- The energy resolution @ the Al_k line (1.5keV) decreased since launch from 98 eV to 99 eV (FWHM).
- 3. Since launch the operating conditions have never been changed.
- 4. Up to now about 6000
 QSO SDSS 1044-0125
 observations were made with XMM Newton.
 In 80 % of all observations the pnCCD was chosen as `prime instrument´.
- 5. Up to now, 900 refereed astrophysics papers have been published

European Space Agency

FS pn-CCD for the ROSITA mission (ESA, DLR, RSA)

- format 256 x 256
- pixel size 75 μ m \Box image
 - 50 μ m \square frame store
- out-of-time

0.1 %

150 mm wafer of recent CCD fabrication

51mm pnCCD with a double-sided readout mounted onto a ceramic substrate

- \blacktriangleright detector size = 27×13.5 mm²
- ≻ 51 µm □ pixel size
- > 528×264 pixel in total,
 - 132×264 in each image & storage area
- readout transfer to both sides
- \blacktriangleright image transfer time = 30 µs
- > OOT probability = 3% @ 1000 fps
- ➤ charge transfer loss CTI ≈ 10⁻⁵ i.e. total charge loss < 0.15 %</p>
- → charge handling capability $> 10^5 e^-$
- ➤ 100% fill factor
- readout noise vs. frame rate:
 - ≻ 1.8 e⁻ @ 10 .. 400 fps
 - ➤ <u>2.3 e⁻</u> @ 400 .. <u>1.100 fps</u>
- ➤ With binning:

➤ <u>2.3 e⁻</u> @ <u>2.200</u> .. <u>4.400 fps</u>

CAMEX amplification- and readout-chip

- > Multi-correlated double-sampling filtering (MCDS)
- > Signal processing of all channels in parallel (132)
- > Selectable gains and operating modes
- \succ Electronic noise contribution less than 1 e⁻
- > Readout-speed per node up to 10MHz (i.e. 6.6μ s per line on two readout nodes)

Lothar Strüder MPI Halbleiterlabor, University of Siegen

Measurement and calculations of optical response

Fast pnCCDs for single photon counting in the optical

Basic idea:

- Move radiation entrance to backside of fully depleted device
- Focus signal electrons on (small) avalanche region
- Development of concept to be shown in several steps

Development of concept I

- Fully depleted bulk radiation entrance on backside
 - Adjustment of field needs large voltage variation

Development of concept II

- Fully depleted bulk radiation entrance on backside
- Biasing from top ring-like structure
 - Gives better control of high field region

- Fully depleted bulk radiation entrance on backside
- Biasing from top ring-like structure
 - Modulation of depth of buried p-layer
 - Addition of drift rings
 - Focusses electrons to centre

Simulation results

Electron and hole distribution around avalanche region

Simulation results

- Electric field distribution in avalanche region
- Uniform field distribution up to 3µm radius
- All signal electrons enter avalanche region at smaller radius

Istanbul, September - 8, 2005

The Compton Camera Imager (CCI)

- 1. The Compton Camera Concept
- 2. The Controlled Drift Detector (CDD)
- 3. First Tests
- 4. Fast Timing

Participating Institutions:

- 1. Universität Siegen (D)
- 2. Politecnico di Milano (I)
- 3. MPE-HLL (D)
- 4. Universität Bonn (D)
- 5. Universität Essen (D)
- 6. Vanderbilt University (USA)
- 7. University College London (UK)
- 8. University of Rome (I)
- 9. Universität Erlangen (D)
- 10. Forschungszentrum Jülich (D)

Advantages of CCI's for small animal analysis:

- 1. Position resolution can be as good as 100 μ m ($\Delta\delta \approx 0.5^{\circ}$)
- 2. CCI is operated colimatorless
- 3. Total efficiency can be as high as 10 %
- 4. Performance gain with increasing X-ray energy
- 5. No inverse relation between resolution and sensitivity
- 6. Good intensity resolution

Our goals:

- 1. Improve in vivo image resolution from 1.5 mm to 0.15 mm
- 2. Determine the distribution of labeled drugs and genes with increased accuracy
- 3. Verify the targeting of receptor specific probes for clinical utility and drug development

4.

absorption detector

- fast trigger from electron-hole induction on back electrodes
- achievable time jitter depends on induction signals, electronic noise, etc..

2-D imaging and spectroscopy of a Fe-55 source @ 100 kHz

A.Castoldi, C.Guazzoni, P.Rehak, L.Strüder, Trans. Nucl. Sci. 49 (3) June 2002

NР

PNSenser

Radiographic image of a lizard*...

pixel size: $120\mu m$, 10^5 frames/s, T=300 K

Istanbul, September - 8, 2005

Lothar Strüder MPI Halbleiterlabor, University of Siegen

55

ASCA's and XMM's relativistic Fe-line Tanaka et al. 1995

courtesy of Chris Reynolds

DEPFETs for the XEUS WFI

- 1. Flexible operating modes
- 2. small power dissipation (less than 2 W)
- 3. Fano limited energy resolution from 0.3 keV to 30 keV
- 4. Spatial resolution better than 15 μm @ 100 μm pixel size
- 5. Homogeneous radiation entrance window
- 6. Intrinsic radiation hardness, no charge transfer needed
- 7. ENC can be lowered to less than 1 e⁻ rms with NDR
- 8. Optical ``Blocking Filter'' can be directly integrated
- 9. Operation at ``warm temperatures'', e.g. 40 ° C

- Global drain contact
 Sources connected
- Sources connected column-wise
- Gate, Clear &
 Cleargate connected
 row-wise
- Source follower readout: Column biased by current source

CAMEX 64 G:

64 channel low noise voltage amplifier 8-fold CDS-filter and integrated sequencer

Switcher II: Control chip with 64 channels a 2 ports & integrated sequencer AMS high voltage CMOS process (up to 20 V)

Most favourable design

 STD: 45 μm gate circumference / 5 μm Gate length

All structures with 2 polysilicon and 2 metal layers

Structures of this type homogeneous and defect free

Prototype matrices

- \succ 64 x 64 pixel arrays with 75 x 75 μm^2 pixel size
- Complete set of control & readout electronics
- > 2 kinds of hybrids: PCB & Ceramic
- > PCB for pre-testing and structure selection
- > Ceramic for high-performance tests at low temperature
- Modular, PC based and scalable readout system for test & evaluation
 - PCB type Hybrid

Ceramic Hybrid

Istanbul, September - 8, 2005

Lothar Strüder MPI Halbleiterlabor, University of Siegen

Imaging with DEPFETs

- > Illumination from backside
- Baffle: 300 µm thick silicon
- Minimal structure size: 150 μm
- > Exposure ca. 100000 frames

> Contour plot from ADU maps

> Hitmap with 100 ADU threshold

PNSenser

Scientific activities of the MPE

Istanbul, September - 8, 2005

MPI

Lothar Strüder MPI Halbleiterlabor, University of Siegen