Euromedim 2006 :1st European Conference on Molecular Imaging Technology

Contribution ID: 111 Type: poster

Multipixel Geiger-mode photon detectors for ultra-weak light sources.

Wednesday 10 May 2006 14:00 (20 minutes)

We developed and tested prototype arrays of Single Photon Avalanche Detectors (SPAD), fabricated in silicon planar technology and working at low voltage (» 30 V) in Geiger mode operation, to achieve a photon-resolving operational mode; the size of the elementary cells is from 20 μm up to 100 μm . Coupling such a multipixel sensor to light sources as scintillators and laser, we have characterized the timing, amplitude, cross-talk, afterpulsing and the dependence from the temperature. For 50 µm diameter SPADs the measured gain is of the order of 106÷107, with dark counting rates at room temperature below 1 kHz. The detection efficiency is typically around 50% at 550 nm, 10% at 850 nm and 3% at 1000 nm. We proved that in the single photon regime, obtained with a very low laser intensity, this photodetector can reconstruct the charge spectrum and the time profile of a subnanosecond optical pulse, while its intrinsic time resolution is below 100 ps. Between adjacent pixels we observed a cross-talk probability of the order of 10-4, while we did not observe any indication of a dependance on the distance between the triggering pixel and its neighbour. We also tested a sensor where each pixel was optically isolated from the neighbours by means of an optical trench suitably placed around it. No difference was observed with respect to the standard sensor, and this excludes the optical cross-talk.

In the meanwhile, with the Deep Lithography with Ions (DLI) technology we are working to develop micro-mechanical and micro-optical components, finalized to optimize the coupling between light sources (fibers, bulk scintillators, etc) and the multipixel sensor. The goal is to fabricate compact high-sensitivity and high-resolution solid state photon detectors, for applications in several scientific areas, in particular regarding medical diagnostics, bioluminescence, TCSPS microscopy, chemical analysis, etc.

Authors: COSENTINO, L. (INFN-Laboratori Nazionali del Sud, Via Santa Sofia 64, 95125 Catania Italy); FINOC-CHIARO, P. (INFN-Laboratori Nazionali del Sud, Via Santa Sofia 64, 95125 Catania Italy)

Co-authors: CAMPISI, A. (INFN-Laboratori Nazionali del Sud, Via Santa Sofia 64, 95125 Catania Italy); HERMANNE, A. (Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium); PIAZZA, A. (ST-Microelectronics, Stradale Primosole 50, 95100 Catania Italy); PAPPALARDO, A. (INFN-Laboratori Nazionali del Sud, Via Santa Sofia 64, 95125 Catania Italy); SCORDINO, A. (DMFCI - Università di Catania, Viale A. Doria 6, 95125 Catania, Italy); VOLCKAERTS, B. (Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium); SANFILIPPO, D. (ST-Microelectronics, Stradale Primosole 50, 95100 Catania Italy); SCIACCA, E. (CNR-IMM, Catania, Italy); MUSUMECI, F. (DMFCI - Università di Catania, Viale A. Doria 6, 95125 Catania, Italy); FALLICA, G. (ST-Microelectronics, Stradale Primosole 50, 95100 Catania Italy); THIENPONT, H. (Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels,

Belgium); VAN ERPS, J. (Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium); MAZZILLO, M. (ST-Microelectronics, Stradale Primosole 50, 95100 Catania Italy); VERVAEKE, M. (Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium); VYNCK, P. (Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium); LOMBARDO, S. (CNR-IMM, Catania, Italy); PRIVITERA, S. (DMFCI - Università di Catania, Viale A. Doria 6, 95125 Catania, Italy); TUDISCO, S. (INFN-Laboratori Nazionali del Sud, Via Santa Sofia 64, 95125 Catania Italy); VAN OVERMEIRE, S. (Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium)

Presenter: CAMPISI, A. (INFN-Laboratori Nazionali del Sud, Via Santa Sofia 64, 95125 Catania Italy)

Session Classification: Poster session : detection modules and electronics

Track Classification: • Conversion materials and photodetectors