New methods in QCD

Nigel Glover

IPPP, University of Durham

HERA-LHC workshop, DESY, March 23, 2005

Overview

In a recent paper Witten made a striking proposal to relate perturbative gauge theory amplitudes to topological string theory in twistor space

Witten, hep-th/0312171

→ Advance in calculating tree amplitudes in massless gauge theories:

Cachazo, Svrcek and Witten, hep-th/0403047

Amplitudes constructed from scalar propagators and tree-level maximal helicity violating (MHV) amplitudes which are interpreted as new scalar vertices

⇒ New type of on-shell recursion relations

Britto, Cachazo and Feng, hep-th/0412308

 \Rightarrow Recent developments in computing one-loop amplitudes in $\mathcal{N}=4$ SuperYang Mills theory (as well as $\mathcal{N}=1$ and maybe even QCD)

State of play circa 2003

Multi-jet production at the LHC using HELAC/PHEGAS

Draggiotis, Kleiss, Papadopoloulos

# of jets	2	3	4	5	6	7	8
# of dist.processes	10	14	28	36	64	78	130
total # of processes	126	206	621	861	1862	2326	4342
$\sigma(nb)$	-	91.41	6.54	0.458	0.030	0.0022	0.00021
% Gluonic	-	45.7	39.2	35.7	35.1	33.8	26.6

- The number of Feynman diagrams for an n gluon process increases very quickly with n
- → for the 10 gluon amplitude there are 10,525,900 diagrams
- ⇒ Feynman diagrams very inefficient for many legs
- Control the quantum numbers of the scattering particles

Feynman diagrams - Colour Ordered Amplitudes

$$\mathcal{A}_n(1,\ldots,n) = \sum_{perms} Tr(T^{a_1}\ldots T^{a_n}) A_n(1,\ldots,n)$$

Colour-stripped amplitudes A_n : cyclically ordered

Order of external gluons fixed

The subamplitudes A_n have nice properties in the infrared limits.

Can reconstruct the full amplitude A_n from A_n . In the large N limit,

$$|\mathcal{A}_n(1,\ldots,n)|^2 \sim N^{n-2} \sum_{perms} |A_n(1,\ldots,n)|^2$$

Feynman diagrams: Recursion relations

Full amplitudes can be built up from simpler amplitudes with fewer particles

Purple gluons are off-shell, green gluons are on-shell. This is a recursion relation built from off-shell currents.

Berends, Giele

Particularly suited to numerical solution

ALPGEN, HELAC/PHEGAS

Feynman diagrams: Spinor Helicity Formalism

In four dimensions, write massless vector

$$p_{a\dot{a}} \equiv p_{\mu}\sigma^{\mu}_{a\dot{a}} = \lambda_a \tilde{\lambda}_{\dot{a}}$$

where λ_a and $\tilde{\lambda}_{\dot{a}}$ are commuting Weyl spinors of positive and negative chirality.

Spinor products are

$$\langle \lambda_i, \lambda_j \rangle = \epsilon^{ab} \lambda_{ia} \lambda_{jb} = \langle ij \rangle = -\langle ji \rangle = \bar{u}^-(i) u^+(j)$$

$$\langle \tilde{\lambda}_i, \tilde{\lambda}_j \rangle = -\epsilon_{\dot{a}\dot{b}} \tilde{\lambda}_i^{\dot{a}} \tilde{\lambda}_j^{\dot{b}} = [ij] = \langle ji \rangle^* = \bar{u}^+(i) u^-(j)$$

$$s_{ij} = (p_i + p_j)^2 = 2 p_{i\mu} p_j^{\mu} = \langle ij \rangle [ji]$$

Gauge vectors: η is reference momentum \leftrightarrow gauge choice

$$\varepsilon_{ia\dot{a}}^{-} = \frac{\lambda_{ia}\tilde{\eta}_{\dot{a}}}{[\tilde{\lambda}_{i}\tilde{\eta}]} \qquad \varepsilon_{ia\dot{a}}^{+} = \frac{\eta_{a}\tilde{\lambda}_{i\dot{a}}}{\langle \eta \lambda_{i} \rangle}$$

Each row describes scattering with n_+ positive helicities and n_- negative helicities.

Each circle represents an allowed helicity configuration - from all positive on the right to all negative on the left

For example, the result of computing the 25 diagrams for the five-gluon process yields

$$A_5(1^{\pm}, 2^{+}, 3^{+}, 4^{+}, 5^{+}) = 0$$

 $A_5(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}) = \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle}$

In fact, for n point amplitudes,

$$A_n(1^{\pm}, 2^+, 3^+, \dots, n^+) = 0$$

 $A_n(1^-, 2^-, 3^+, \dots, n^+) = \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}$

Maximally helicity violating (MHV) amplitudes

Parke, Taylor; Berends, Giele

$$A_n(1^{\pm}, 2^+, 3^+, \dots, n^+) = 0$$

effective tree-level supersymmetry

$$A_n(1^-, 2^-, 3^+, \dots, n^+) = \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}$$

Specific helicity amplitudes

For phenomenological purposes, all possible helicity amplitudes are needed - and which are usually much more complicated. For example, the 220 six gluon diagrams contributing to NMHV amplitudes (3- and 3+ helicities) can be written as

$$A_{6} = 8g^{4} \left[\frac{\alpha^{2}}{s_{123}s_{12}s_{23}s_{34}s_{45}s_{56}} + \frac{\beta^{2}}{s_{234}s_{23}s_{34}s_{45}s_{56}s_{61}} + \frac{\gamma^{2}}{s_{345}s_{34}s_{45}s_{56}s_{61}s_{12}} + \frac{s_{123}\beta\gamma + s_{234}\gamma\alpha + s_{345}\alpha\beta}{s_{12}s_{23}s_{34}s_{45}s_{56}s_{61}} \right]$$

where for $A_6(1^+, 2^+, 3^+, 4^-, 5^-, 6^-)$,

$$\alpha = 0, \qquad \beta = [23]\langle 56\rangle\langle 1|2+3|4\rangle, \qquad \gamma = [12]\langle 45\rangle\langle 3|1+2|6\rangle,$$

Hidden structure is uncovered in twistor space

Twistor Space

Twistor space:

Penrose, 1967

Amplitudes in twistor space obtained by Fourier transform with respect to positive helicity spinors,

$$\tilde{A}(\lambda_i, \mu_i) = \int \prod_i \frac{d^2 \tilde{\lambda}_i}{(2\pi)^2} \exp\left(i \sum_j \mu_j^{\dot{a}} \tilde{\lambda}_{j\dot{a}}\right) A(\lambda_i, \tilde{\lambda}_i)$$

Witten observed that in twistor space external points lie on certain algebraic curves

⇒ degree of curve is related to the number of negative helicities and loops

$$d = n_{-} - 1 + l$$

Twistor Space

\boldsymbol{MHV}

NMHV

MHV rules

Start from MHV amplitude and define off-shell vertices

Cachazo, Svrcek and Witten

$$V(1^-, 2^-, 3^+, \dots, n^+, P^+) = \frac{\langle 12 \rangle^4}{\langle 12 \rangle \cdots \langle n - 1n \rangle \langle nP \rangle \langle P1 \rangle}$$
P+
3+

and

$$V(1^-, 2^+, 3^+, \dots, n^+, P^-) = \frac{\langle 1P \rangle^4}{\langle 12 \rangle \cdots \langle n - 1n \rangle \langle nP \rangle \langle P1 \rangle}$$

$$\stackrel{P_-}{\longrightarrow} 3+$$

Crucial step is off-shell continuation $P^2 \neq 0$:

$$\langle iP \rangle = \frac{\langle i^- | P | \eta^- \rangle}{[P \eta]} = \sum_j \frac{\langle i^- | f | \eta^- \rangle}{[P \eta]}$$

where $P = \sum_{i} j$ and η is lightlike auxiliary vector

MHV rules

Must connect up a positive helicity off-shell line with a negative helicity off-shell line

Connecting two MHV's \Rightarrow amplitude with 3 negative helicities Connecting three MHV's \Rightarrow amplitude with 4 negative helicities etc.

As an example, lets use the MHV rules to calculate one of the first non-MHV amplitudes

$$A_6(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$$

Step 1 Draw all the allowed MHV diagrams

There are six MHV graphs

Some graphs are not allowed e.g.

As an example, lets use the MHV rules to calculate one of the first non-MHV amplitudes

$$A_6(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$$

Step 1 Draw all the allowed MHV diagrams

Step 2 Apply MHV rules to each diagram

Example: six gluon scattering: diagram 1

$$\frac{\langle 12 \rangle^4}{\langle 56 \rangle \langle 61 \rangle \langle 12 \rangle \langle 2|P| {\color{red} \eta} \rangle \langle 5|P| {\color{red} \eta} \rangle} \times \frac{1}{s_{34}} \times \frac{\langle 3|P| {\color{red} \eta} \rangle^4}{\langle 34 \rangle \langle 4|P| {\color{red} \eta} \rangle \langle 3|P| {\color{red} \eta} \rangle}$$

with
$$P = 3 + 4 = -(1 + 2 + 5 + 6)$$

Example: six gluon scattering: diagram 2

$$\frac{\langle 12 \rangle^4}{\langle 61 \rangle \langle 12 \rangle \langle 2|P| {\color{red} \eta} \rangle \langle 6|P| {\color{red} \eta} \rangle} \times \frac{1}{s_{345}} \times \frac{\langle 3|P| {\color{red} \eta} \rangle^4}{\langle 34 \rangle \langle 45 \rangle \langle 5|P| {\color{red} \eta} \rangle \langle 3|P| {\color{red} \eta} \rangle}$$

with
$$P = 3 + 4 + 5 = -(1 + 2 + 6)$$

As an example, lets use the MHV rules to calculate one of the first non-MHV amplitudes

$$A_6(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$$

Step 1 Draw all the allowed MHV diagrams

Step 2 Apply MHV rules to each diagram

Step 3 Add up diagrams and check η independence

Next-to MHV amplitude for *n* **gluons**

Simplest case: $A_n(1^-, 2^-, 3^-, 4^+, \dots, n^+)$ 2(n-3) graphs

Cachazo, Svrcek and Witten

$$A = \sum_{i=3}^{n-1} \frac{\langle 1(2,i) \rangle^3}{\langle (2,i)i+1 \rangle \langle i+1i+2 \rangle \dots \langle n1 \rangle} \frac{1}{s_{2,i}^2} \frac{\langle 23 \rangle^3}{\langle (2,i)2 \rangle \langle 34 \rangle \cdots \langle i(2,i) \rangle} + \sum_{i=4}^{n} \frac{\langle 12 \rangle^3}{\langle 2(3,i) \rangle \langle (3,i)i+1 \rangle \dots \langle n1 \rangle} \frac{1}{s_{3,i}^2} \frac{\langle (3,i)3 \rangle^3}{\langle 34 \rangle \cdots \langle i-1i \rangle \rangle \langle i(3,i) \rangle}.$$

where $(k,i) = k + \cdots + i$ and the off-shell continuation is suppressed

→ Lorentz invariant and gauge invariant expressions

Generating all the tree amplitudes

Amplitudes with i- and j+ helicities

- MHV rules always adds one negative helicity and any number of positive helicities
 - ⇒ maps out all allowed tree amplitudes

Other processes

MHV rules have been generalised to many other processes

- √ with massless fermions quarks, gluinos
 - Georgiou and Khoze; Wu and Zhu; Georgiou, EWNG and Khoze
- √ with massless scalars squarks
 - Georgiou, EWNG and Khoze; Khoze
- √ with an external Higgs boson
 - Dixon, EWNG, Khoze; Badger, EWNG, Khoze
- √ with an external weak boson

Bern, Forde, Kosower and Mastrolia

Has provided new results for n-particle amplitudes Also useful for studying infrared properties of amplitudes

Birthwright, EWNG, Khoze and Marquard

Processes with fermions

Similar colour decomposition

$$\mathcal{A}_n(1,\ldots,\Lambda_r,\Lambda_s,\ldots,n) = \sum_{perms} (T^{a_1}\ldots T^{a_n})_{r,s} A_n(\Lambda_r,1,\ldots,n,\Lambda_s)$$

MHV amplitude with 2 fermions and n-2 gluons

$$A_n(g_t^-, \Lambda_r^-, \Lambda_s^+) = \frac{\langle tr \rangle^3 \langle ts \rangle}{\prod_{i=1}^n \langle i | i+1 \rangle}$$

MHV amplitude with 4 fermions and n-4 gluons

$$A_n(\Lambda_r^-, \Lambda_s^+, \Lambda_t^-, \Lambda_u^+) = \frac{\langle rt \rangle^3 \langle su \rangle}{\prod_{i=1}^n \langle i | i+1 \rangle}$$

⇒ similar scalar graph construction for fermionic amplitudes

Recursive MHV amplitudes

As the number of negative helicity legs grows, the number of MHV diagrams grows

⇒ Use previously computed on-shell NMHV amplitudes as building blocks for recursion relation

Bena, Bern and Kosower

connected by same off-shell continuation as before. Each blob is an amplitude with fewer particles and fewer negative helicities.

⇒ easily programmed

BCF recursion relations

Based on experience with one-loop amplitudes, Britto, Cachazo and Feng proposed a new set of on-shell recursion relations

Britto, Cachazo and Feng Britto, Cachazo, Feng and Witten

hatted momenta are shifted to put on-shell

$$\hat{i} = i + z\eta, \qquad \hat{j} = j - z\eta, \qquad \hat{P} = P + z\eta$$

BCF recursion relations

• It turns out that the shift η is not a momentum, but

$$\eta = \lambda_i \tilde{\lambda}_j \qquad OR \qquad \eta = \lambda_j \tilde{\lambda}_i$$

lacksquare The parameter z is given by

$$z = \frac{P^2}{\langle jPi]}$$

- Easy to prove that recursion relation is valid using complex analysis
- ${\color{red} {\bf P}}$ Requires on-shell three-point vertex contributions both MHV and $\overline{\rm MHV}$.

BCF - six gluon example

If we select 3 and 4 to be the special gluons, there are only three diagrams (for any helicities)

For this helicity assignment, the middle one is zero!.

$$A_6(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$$

$$= \frac{1}{\langle 5|3 + 4|2\rangle} \left(\frac{\langle 1|2 + 3|4\rangle^3}{[23][34]\langle 56\rangle\langle 61\rangle s_{234}} + \frac{\langle 3|4 + 5|6\rangle^3}{[61][12]\langle 34\rangle\langle 45\rangle s_{345}} \right)$$

Extremely compact (and correct) results for up to 8 gluons

Other processes

BCF recursion relations have been generalised to other processes

√ with massless fermions - quarks, gluinos

Luo and Wen

√ gravitons

Bedford, Brandhuber, Spence and Travaglini; Cachazo and Svrcek

There is nothing (in principle) to stop this approach being applied to particles with mass.

One loop amplitudes

- So far, supersymmetry was not a major factor tree level amplitudes same for $\mathcal{N}=4$ $\mathcal{N}=1$ and QCD
- Not true at the loop level due to circulating states

$$A_n^{\mathcal{N}=4} = A_n^{[1]} + 4A_n^{[1/2]} + 3A_n^{[0]}$$

$$A_n^{\mathcal{N}=1,chiral} = A_n^{[1/2]} + A_n^{[0]}$$

$$A_n^{glue} = A_n^{\mathcal{N}=4} - 4A_n^{\mathcal{N}=1,chiral} + A_n^{[0]}$$

- All plus and nearly all-plus amplitudes do not vanish for non-supersymmetric QCD
- A lot of progress by a lot of people

SUSY QCD loops

 $\sqrt{N} = 4$ and N = 1 one-loop amplitudes are constructible from their 4-dimensional cuts \Rightarrow employ unitarity techniques

Bern, Dixon, Dunbar, Kosower

V For $\mathcal{N} = 4$ all amplitudes are a linear combination of known box integrals

$$\mathbf{A_n} = \mathbf{\Sigma} \quad \mathbf{a} \quad + \mathbf{b} \quad + \mathbf{c} \quad + \mathbf{d} \quad + \mathbf{e} \quad + \mathbf{f} \quad - \mathbf{e} \quad - \mathbf{e$$

Twistor space interpretation

Coefficients of boxes have very interesting structures.

Bern, Del Duca, Dixon, Kosower; Britto, Cachazo, Feng

Twistor space interpretation

Four mass box first appears in eight-point amplitude with four negative and four positive helicities

Bern, Dixon, Kosower

e.g.

QCD loops

QCD amplitudes more complicated

- (a) Not 4-dimensional cut constructible. Rational function contribution not probed by 4-d cut
- (b) All plus and almost all plus amplitudes not zero but rational functions. Not protected by SWI.

Nevertheless, all four-point and five-point amplitudes known:

Recent progress

√ On-shell recurrence relations for all plus and almost all plus amplitudes

Bern, Dixon and Kosower

Recursion relations complicated by double pole terms and boundary terms

√ Scalar six-point NMHV amplitudes

Bidder, Bjerrum-Bohr, Dunbar and Perkins

Computed parts of six-point QCD amplitudes that are obtainable using 4-dimensional cut constructibility

Summary - New rules for tree-level amplitudes

MHV rules

Cachazo, Svrcek and Witten

- √ New way of computing amplitudes with gluons and massless quarks
- √ Higgs coupling to massless quarks and gluons

Dixon, EWNG, Khoze; Badger, EWNG, Khoze

√ Vector bosons coupling to massless quarks

Bern, Forde, Kosower and Mastrolia

BCF recursion relations

Britto, Cachazo and Feng; Britto, Cachazo, Feng and Witten

√ Extended to quarks

Luo and Wen

√ and gravitons

Bedford, Brandhuber, Travaglini, Spence; Cachazo, Svrcek

Summary - Progress for one-loop amplitudes

 \surd $\mathcal{N}=4$ amplitudes almost at the point where coefficients of boxes can be read off - using quadruple cuts and holomorphic anomaly

Britto, Cachazo and Feng

→ All NMHV amplitudes

Bern, Dixon and Kosower

- \checkmark $\mathcal{N}=1$ MHV amplitudes and 6-point NMHV amplitudes
- √ Application to one-loop gravity

Bern, Bjerrum-Bohr, Dunbar

? QCD amplitudes

Bedford, Brandhuber, Spence and Travaglini; Bern, Dixon and Kosower; Bidder, Bjerrum-Bohr, Dunbar and Perkins

A very exciting and rapidly developing field Expect more important results soon