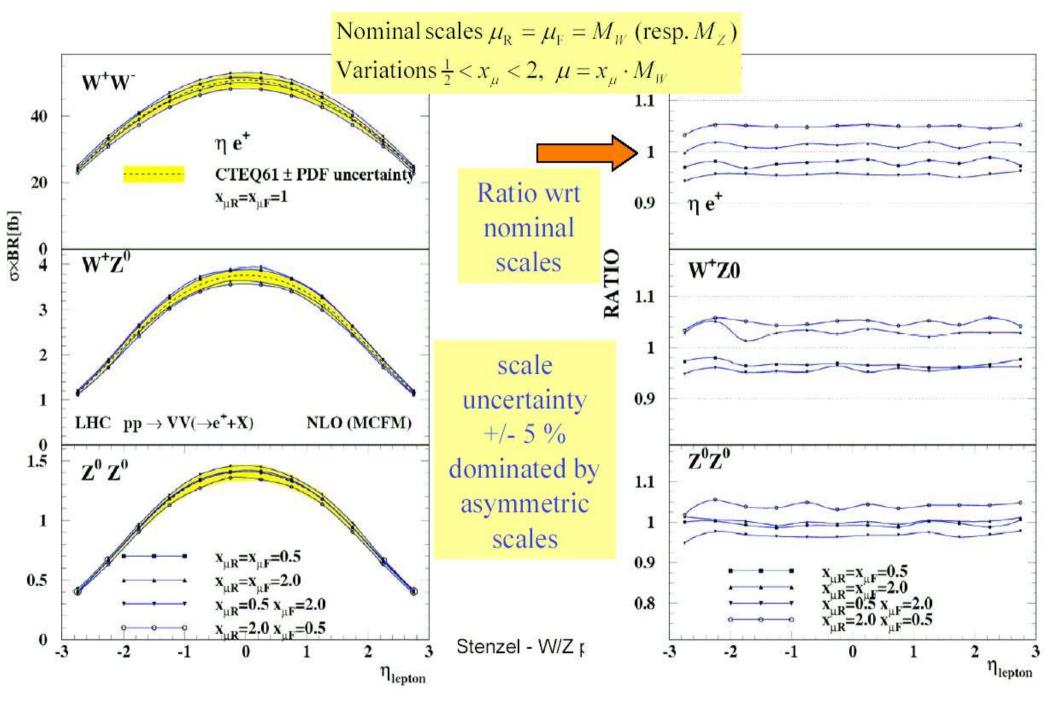
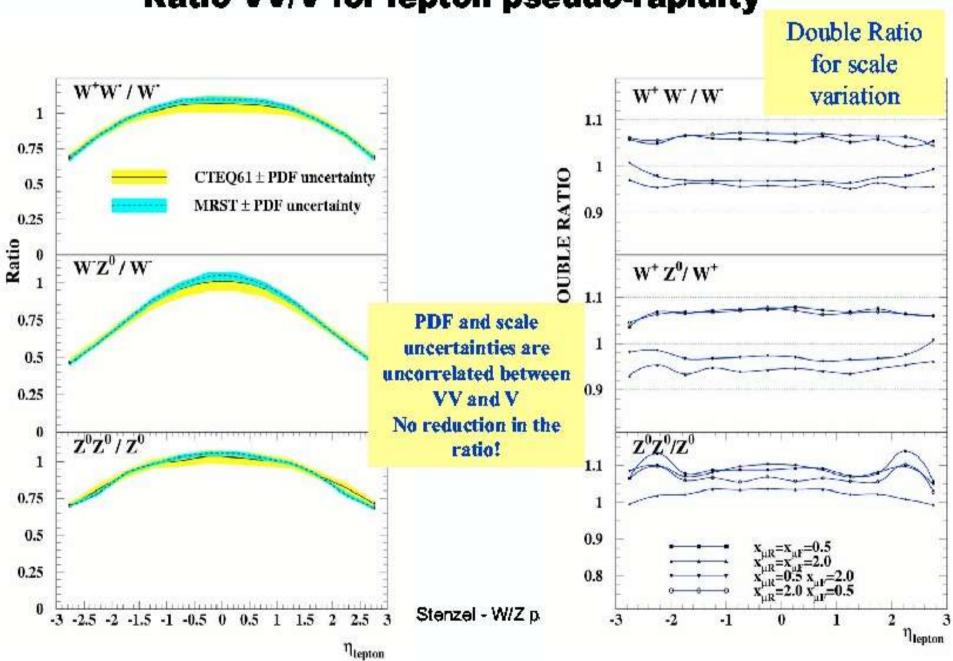


- summary of talks by:
 - Stenzel, Tricoli und Sarkar, Dittmar

Leptonic (plus γ) final states


- resonance production of W and Z, the normalization process: $(q\bar{q} \rightarrow Z \rightarrow \ell \ell \text{ and } q\bar{q} \rightarrow W \rightarrow \ell \nu)$
- high mass Drell–Yan lepton pairs $q\bar{q} \rightarrow (\gamma, Z)^* \rightarrow \ell \ell$ and $q\bar{q} \rightarrow W^* \rightarrow \ell \nu$
- boson pair physics (WW, WZ, ZZ, Wγ etc) qq̄ → WW(WZ, ZZ, Wγ) with W, Z → leptons (ZZ → ℓℓℓℓ has small cross section)


expect clean event samples, but diboson mass (Q^2) sometimes not well measured $(W \rightarrow \ell \nu)$ to be compensated with accurate Monte Carlo!

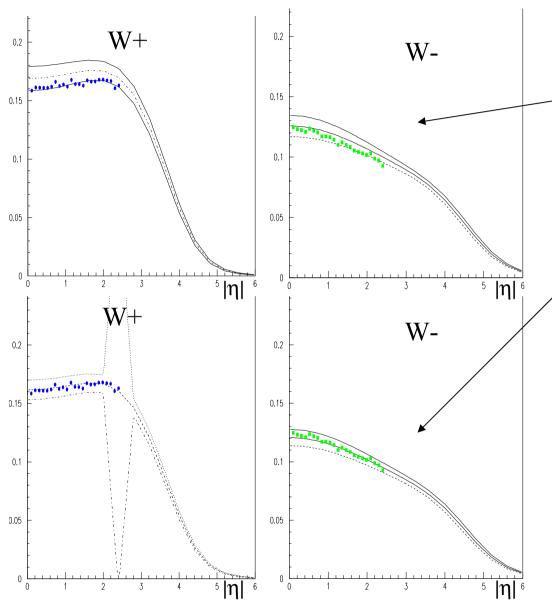
WW pair production: P_T and M_{inv}

Scale dependence

Ratio VV/V for lepton pseudo-rapidity

Conclusions

- study of WW,WZ and ZZ production with experimental cuts
- differential distributions (rapidity, P_T, m_{inv})
- systematic uncertainties:
 - PDF : 3.5-4%
 - Perturbative 3.6 4.1 %
- Systematics for VV and V is uncorrelated, does not cancel in the VV/V ratio


Summary of uncertainties

	W/Z	W/Z + jet	WW/ZZ
$\Delta_{PDF}[\%]$	± 5.3	± 4.3	± 3.7
Δ _{Pert} [%]	± 5.4	± 9.1	± 3.8

HERA-LHC Workshop March 21-24, 2005

H. Stenzel - W/Z pair production at LHC

PDF Fits to generated data –fit PDF different from generator

930,000 W+ & W- events generated with **CTEQ6.1**, decay to e+ & e-

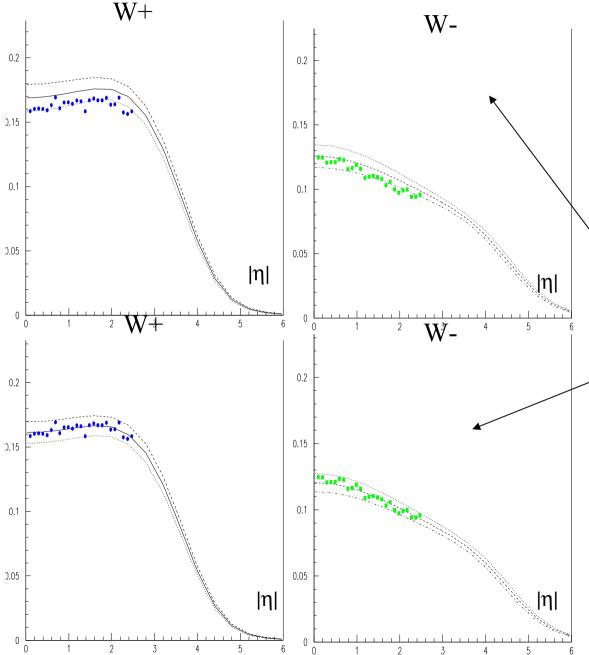
(NO detector simulation)

vs **ZEUS02** predictions- central values differ

These events can be included in the ZEUS fit - for the DIS data remains acceptable Central values of PDF parameters shift particularly low-x gluon parameter

Errors on PDF parameters at Q²₀ reduced - particularly low-x gluon parameter

 $xg(x) = x^{-\lambda}$, $\lambda = -.187 \pm .046$


Becomes $\lambda = -.165 \pm .029$

Sorry! Something wrong in the display

PDF

PDF fits to generated data – generate with one PDF- simulate

detector – correct with different PDF

930,000 W+ & W- events generated with **CTEQ6.1**, decay to e+ & e-

passed through ATLFAST

and then corrected from **Detector** back to **Generator** level with **ZEUS02**

vs **ZEUS02** predictions -central values differ

These events can be included in the ZEUS fit - for the DIS data remains acceptable. Central values of PDF parameters shift particularly low-x gluon parameter

Errors on PDF parameters at Q²₀ reduced - particularly low-x gluon parameter

xg(x) = x $^{-\!\lambda}$, λ = -.187 \pm .046

Becomes $\lambda = -.155 \pm .030$

Conclusions

I showed W⁺⁻-> e⁺⁻ rapidity distributions with the full quoted **PDF uncertainty** for MRST02,CTEQ61,ZEUS2002

I showed that the *PDF re-weighting* technique can be useful to save generation time especially to evaluate the PDF uncertainties.

Good agreement between *Herwig+K-Factors* and *MC@NLO*

The *Background* is very small after selection cuts **Charge Misidentification** systematic uncertainty can be < 2% in central rapidity region < 4% at high rapidity

Statistical errors are negligible on W reconstruction at LHC

Including the W Rapidity distributions in our **global data PDF Fits we reduce the PDF errors**, especially the ones associated to *gluon parameters*: Error on low-x gluon parameter λ reduced of ~35-37% Moreover the central values might be sensibly affected too: Change of the central value of λ of ~ 12-17%

The convolution of ATLFAST Detector Smearing and PDF choice for the corrections introduces a relative **variation of the cross-section** of about $\Delta \sigma_w \sim 4\%$

Experimental systematic errors for high Q² LHC Physics Can one guess them today?

Michael Dittmar (ETH-Zürich/CMS)

Introduction

some assumptions

LHC final states

learning from previous experiments

guessing the systematic errors

Assumptions

- ATLAS/CMS can be realized according to their design for most cases: they should function "better" than CDF/D0! (this is not the case for b-tagging!)
- 2. LHC experimentation more difficult than Tevatron/LEP measurements!
- 3. LEP (II) systematic errors can be used to guess limitations for LHC experiments! (like detector stability)
 - + efficiency uncertainties for isolated leptons, photons, jets and missing E_T .
 - ++ difficulties of counting jets
 - modelling of Standard Model backgrounds
 → uncertainties must be larger at the LHC!

Guessing (optimistic) experimental systematic limits for the LHC

 $\Delta \epsilon/\epsilon \geq 1\%$ for isolated leptons and photons(?) $p_t \geq 20$ GeV.

 $\Delta \epsilon(b)/\epsilon(b) \ge 5\%$ for "isolated" b-flavoured jets $p_t \ge 20$ GeV.

Jet Veto $\Delta \epsilon / \epsilon \ge$ few % (larger errors if one does jet "counting"!

Ratio measurements W^+/W^- , W/Z etc.. relative errors of 0.5-1% not impossible!

 $t\bar{t}$ cross section relative to W and Z difficult to imagine errors smaller than 5-10%!

background uncertainties (from theory and cut efficiencies): $\Delta B/B = 5-10\%???$ thus signal/background ratios larger than 0.25-0.5 required for "discovery channels"!