HERA-LHC workshop 21/3/2005

Effect of HQ fragmentation in hadro-/photo- production

Massimo Corradi, INFN Bologna

Heavy hadron p_T distributions

$$\frac{d\sigma}{dp_T^H}(p_T^H) = \int \frac{dx}{x} D^{\mathsf{np}}(x) \frac{d\sigma^{\mathsf{pert}}}{dp_T^Q} \left(\frac{p_T^H}{x}\right)$$

•
$$\frac{d\sigma^{\text{pert}}}{dp_T^Q}$$
 = perturbative quark diff. cross section

• $D^{np}(x) = \text{non-perturbative Fragmentation Function (FF)}$

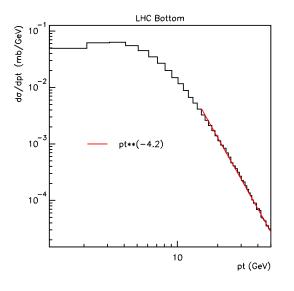
How well can we evaluate the effect of $D^{np}(x)$ on heavy-quark cross sections in ep, pp ? 1 *M. Corradi* HQ fragmentation

if
$$rac{d\sigma^{\mathsf{pert}}}{dp_T^Q}(p_T) = C p_T^{-N}$$
 then

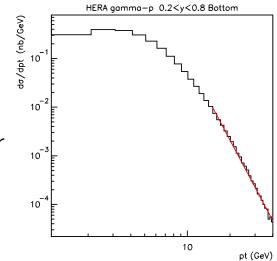
$$\frac{d\sigma}{dp_T^H}(p_T^H) = \int dx \, x^{(N-1)} \, Cp_T^{-N} = \frac{d\sigma^{\mathsf{pert}}}{dp_T^Q} \hat{D}_N^{\mathsf{np}}$$

where
$$\widehat{D}_N^{np} = \int dx \, x^{N-1} \, D^{np}(x)$$

is the N^{th} Mellin moment of the non-pert. FF the approximation of $\frac{d\sigma^{\text{pert}}}{dp_T^Q}(p_T)$ with an inverse power law is quite good at large p_T



For bottom at LHC $N \leq 4.2$



For bottom at HERA $N \leq 5.5$

Connection with central moments

We are used to describe distributions in terms of the mean value $\langle x \rangle$ and of the central moments:

central moments: $\mu_n = \int dx \ (x - \langle x \rangle)^n$, for $n \ge 2$

lowest μ_n have names:

 $(\mu_2)^{1/2} = \sigma$, root mean square $(\mu_3)^{1/3} = S$, skewness $(\mu_4)^{1/4} = \mathcal{K}$, kurtosis

Mellin moments can be written in terms of $\langle x \rangle$ and μ_n :

$$\hat{D}_{1} = 1$$

$$\hat{D}_{2} = \langle x \rangle$$

$$\hat{D}_{3} = \langle x \rangle^{2} + \mu_{2}$$

$$\hat{D}_{4} = \langle x \rangle^{3} + 3\mu_{2} \langle x \rangle + \mu_{3}$$

$$\hat{D}_{5} = \langle x \rangle^{4} + 6\mu_{2} \langle x \rangle^{2} + 4\mu_{3} \langle x \rangle + \mu_{4}$$

$$\hat{D}_{6} = \langle x \rangle^{5} + 10\mu_{2} \langle x \rangle^{3} + 10\mu_{3} \langle x \rangle^{2} + 5\mu_{4} \langle x \rangle + \mu_{5}$$

Case of Heavy Quark fragmentation

Even if not calculable, we know something about $D^{np}(x)$:

$$\langle x
angle = 1 - O(\epsilon)$$
 where $\epsilon = rac{\Lambda_{ ext{QCD}}}{m_Q} \ll 1$

then for any well-behaved distribution peaked around $\langle x \rangle$ and going to zero at 0, 1:

$$\mu_n = O(\epsilon^n) \qquad n \ge 2$$

At order ϵ any Mellin moment depends only on $\langle x \rangle$:

$$\hat{D}_N = \langle x \rangle^{N-1} + O(\epsilon^2)$$

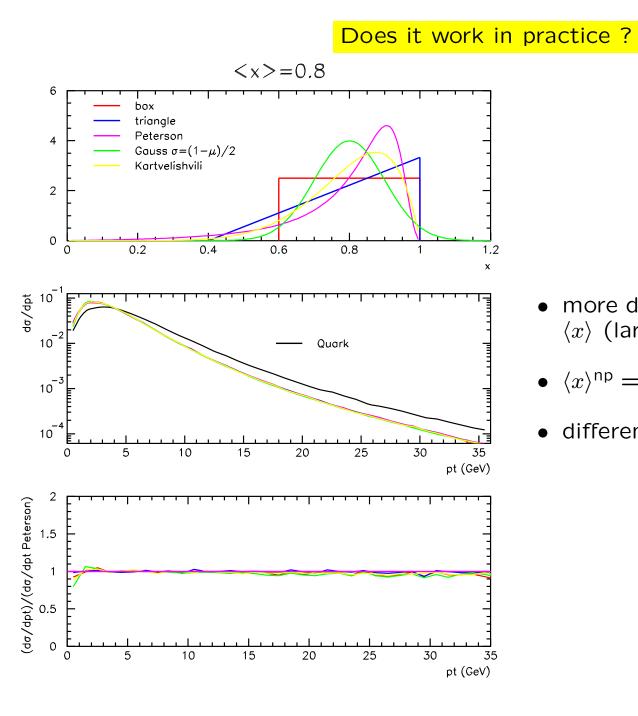
the expansion to ϵ^2 involves the RMS:

$$\widehat{D}_N = \langle x \rangle^{N-1} + \frac{(N-1)!}{2(N-3)!} \sigma^2 \langle x \rangle^{N-3} + O(\epsilon^3)$$

$$\frac{d\sigma}{dp_T^H}(p_T) = \frac{d\sigma^{\text{pert}}}{dp_T^Q}(p_T) \ (\langle x \rangle^{\text{np}})^{N-1} + O(\epsilon^2)$$
what is important is the mean of $D(x)$ not the shape !

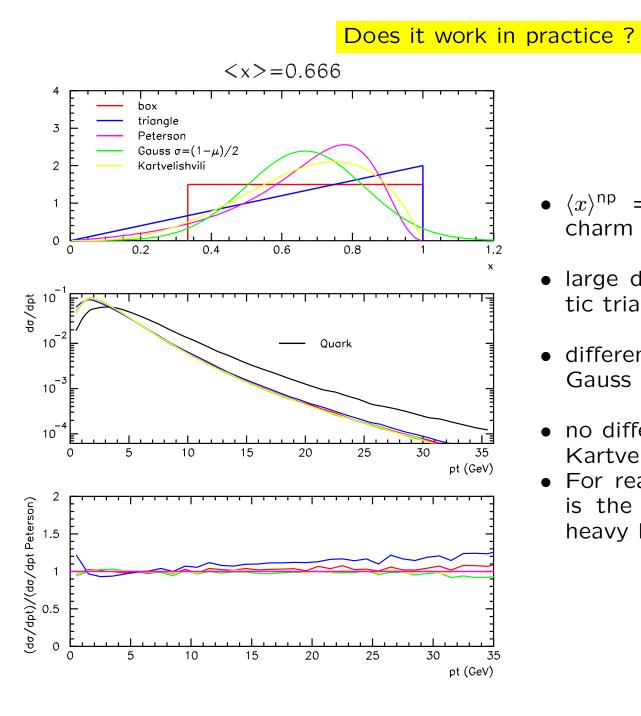
Does it work in practice ? < x > = 0.9box 10 triangle Peterson 7.5 Gauss $\sigma = (1 - \mu)/2$ Kartvelishvili 5 2.5 0 0.2 0.4 0.6 0.8 1.2 x 10 dơ∕dpt 10⁻² Quark 10^{-3} 10 10 15 20 25 30 35 0 5 pt (GeV) 2 (da/dpt)/(da/dpt Peterson) 1.5 0.5 0 20 5 10 15 25 30 35 pt (GeV)

- fix $\langle x \rangle^{np} = 0.9$, typical for b fragmentation
 - try different shapes:
 - Kartvelishvili
 - Peterson
 - Gaussian with $\sigma = (1 \langle x \rangle)/2$
 - flat probability between $1-2(1-\langle x \rangle)$ and 1
 - triangular: slope between $1-3(1-\langle x\rangle)$ and 1
- Smear p_T^Q distribution at LHC from NLO (thanks to A. Dainese)
- all the functions give the same result, within numerica accuracy!



- more difference expected for smaller $\langle x \rangle$ (larger ϵ)
- $\langle x \rangle^{np} = 0.8$ •
- differences below few %

HQ fragmentation 6 M. Corradi



- $\langle x \rangle^{np} = 0.666$, lower than typical charm values
- large difference (20%) for unrealistic triangular function
- difference of less than 10% for Gauss and box
- no difference between Peterson and Kartvelishvili
- For reasonable shapes of FF, $\langle x \rangle^{np}$ is the only relevant parameter for heavy hadron spectra in pp (ep)

 $\langle x \rangle^{np}$ from e^+e^-

Let's evaluate $\langle x \rangle^{np}$ for beauty from e^+e^- beauty.

Obsevable at e^+e^- : scaled energy distribution of the *B* hadron: $f(x_B)$, $x_B = \frac{2E_B}{Q}$

$$f(x_B) = \int \frac{dx}{x} D^{\mathsf{np}}(x) f^{\mathsf{pert}}(\frac{x_B}{x})$$

therefore

$$\langle x_B \rangle = \langle x \rangle^{\mathsf{np}} \langle x \rangle^{\mathsf{pert}}$$

Two ingredients are needed:

 $\langle x_B \rangle$ from direct measurements $\langle x \rangle^{\text{pert}}$ from perturbative theory

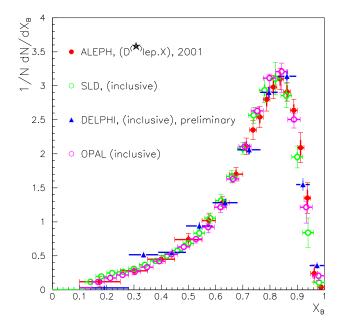
$$\langle x \rangle^{np} = \frac{\langle x_B \rangle \Leftarrow experiment}{\langle x \rangle^{pert} \Leftarrow theory}$$

$\langle x_B \rangle$: data

 $\langle x_B \rangle$ measured at the Z^0 peak by single experiments to better than 1%

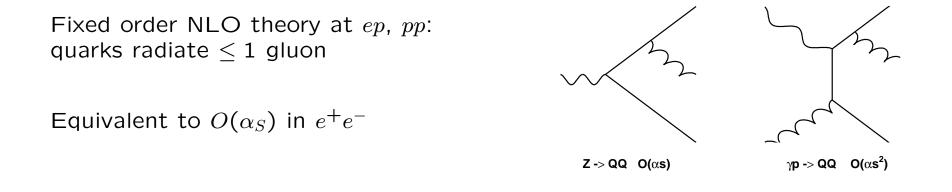
Use the results for the weakly-decaying B hadron: $x_B^w = 2E_{B^w}/Q$

Experiment		$\langle x^w_B angle$	
SLD	0.709	± 0.003 (stat.)	± 0.003 (syst.) ± 0.002 (model)
ALEPH	0.716	\pm 0.006(stat.)	± 0.006 (syst.)
OPAL	0.7193	\pm 0.0016(stat.)	$^{+0.0038}_{-0.0033}$ (syst.) $^{+0.0049}_{-0.0052}$ (syst.)
DELPHI (prel.)	0.7153	\pm 0.0007(stat.)	+0.0049 -0.0052(syst.)
Crude average	0.715	±0.03	



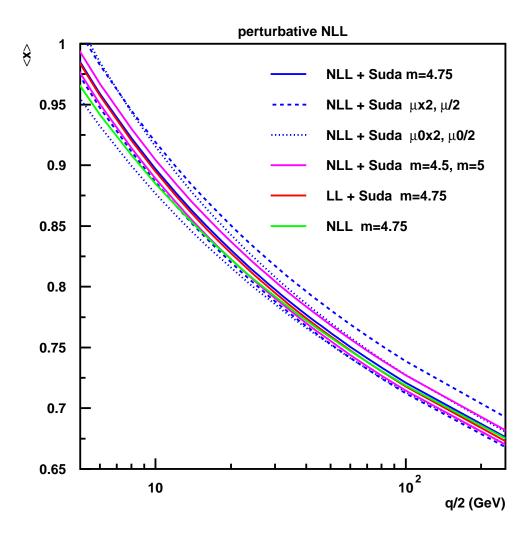
 $\langle x_b \rangle^{\text{pert}}$: Theory

Pert. theory for e^+e^- should correspond to that used for ep or pp.



- for FONLL at ep, pp use NLL theory for e^+e^- : HVQF from Matteo $\hat{f}(x_b) = \hat{C}(\mu) \hat{E}(\mu, \mu^0) \hat{D}^{\text{pert}}(\mu^0)$ where $\mu = Q, \mu^0 = m_b$
- Fixed order NLO: HVQF with $\mu = \mu^0 = Q$ (no evolution)
- Pythia 6.2: same program used for ep, pp, ee
 - 10 M. Corradi HQ fragmentation

Theoretical Uncertainty on NLL Theory

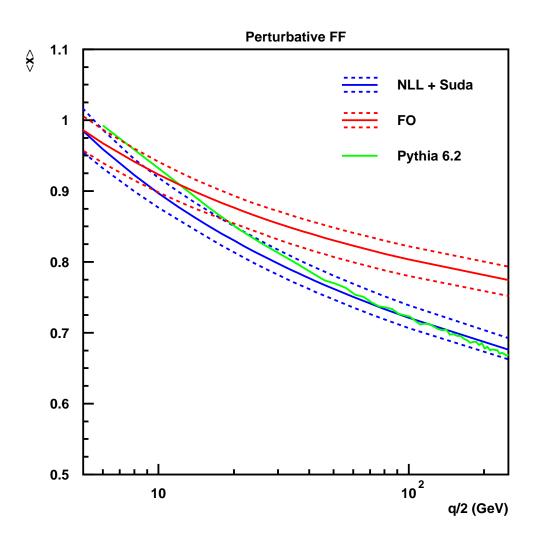


- HVQF nominal: Large-x Sudakov resummation ON, $\mu_F = \mu_R = Q, \ \mu_F^0 = \mu_R^0 = m_b,$ $m_b = 4.75 \text{GeV}, \ \Lambda^5 = 0.226 \text{GeV}$
- vary scales by factors 2
- vary m_b 4.5-5.0 GeV
- result at Q = 92GeV from envelope of scale variations:

 $\langle x \rangle^{\text{pert,NLL}}(M_Z) = 0.768^{+0.019}_{-0.015}$ uncertainty ~ 2%, larger than experim.

- Sudakov res. OFF: small effect
- LL evolution only: tiny effect

Perturbative results



• FO:

from envelope of scale variations:

$$\langle x \rangle^{\text{pert,FO}}(M_Z) = 0.834^{+0.018}_{-0.023}$$

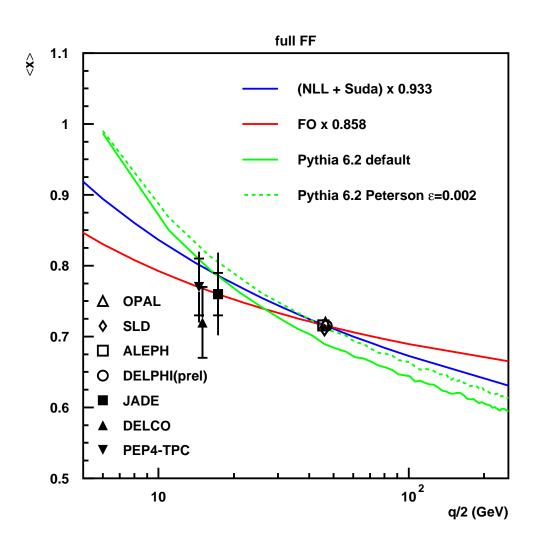
but not compatible with NLL !

Difference with NLL increases with Q, \sim 10% difference at M_Z

• Pythia 6.2 (b quark after PS) compatible with NLL, a bit steeper

 $\langle x \rangle^{\text{pert,Pythia}}(M_Z) = 0.774$

Compare with data and extract $\langle x \rangle^{np}$



- NLL: $\langle x \rangle^{np,NLL} = 0.93 \pm 0.02$ uncertainty dominated by theory
- FO: $\langle x \rangle^{np,FO} = 0.86 \pm 0.02$ but uncertainty must be underestimated !

Considering difference with NLL: $\langle x \rangle^{np,FO} \sim 0.93$ at low p_T $\langle x \rangle^{np,FO} \sim 0.86$ a $p_T \sim M_Z/2$

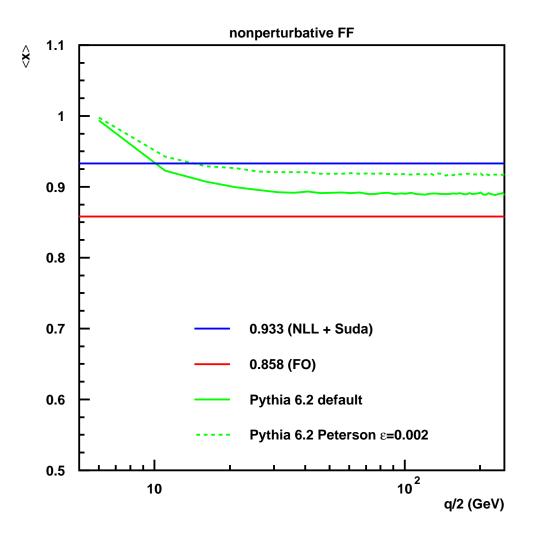
my suggestion: $\langle x \rangle^{\rm np,FO} = 0.90 \pm 0.05$ use FO only for $p_T < M_Z/2$

• Pythia 6.2:

Default (Lund-Bowler) too soft

Reasonable agreement with data with Peterson with $\epsilon = 0.002$

is $\langle x \rangle^{np}$ independent from Q ?



- factorization breaking terms $O(m_b/Q)$
- NLL, FO: factorization ansatz, $D_N^{np}(Q) = \text{constant}$
- Pythia 6.2: $\langle x \rangle^{np} = \langle x_B \rangle / \langle x_b \rangle$ asyntotic value $\langle x \rangle^{np,pythia(Pet.)}(Q \to \infty) = 0.918$

factorization breaks at low Q: $\langle x \rangle^{\text{np,pythia(Pet.)}}(Q \rightarrow 2m_b) = 1$

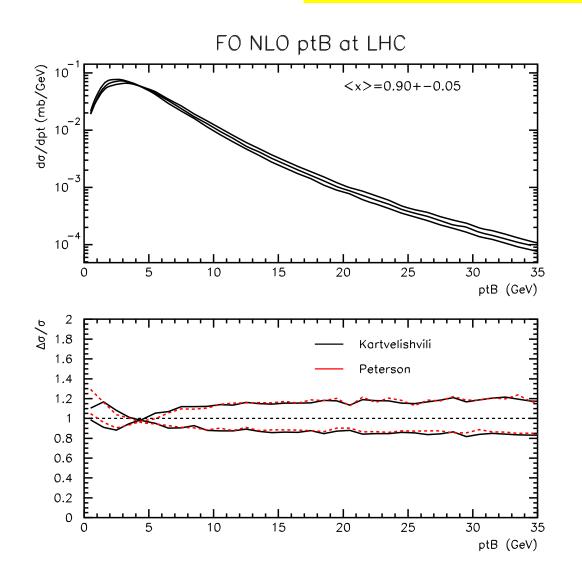
 $\Delta \langle x \rangle^{np} / \langle x \rangle^{np} = 1\%$ at Q/2 = 20 GeV $\Delta \langle x \rangle^{np} / \langle x \rangle^{np} = 5\%$ at Q/2 = 10 GeV

goes empirically like: ($\langle x
angle^{np}(Q) - \langle x
angle^{np}(\infty)$) $\sim 0.5 (m_b/Q)^2$

Translating into usual parameters

- Parameters for FO: $\frac{\langle x \rangle^{np}}{\epsilon} \epsilon$ Poisson α Kartvelishvili 0.90 0.0011 17.0 0.95 0.0002 37.0 0.85 0.0039 10.3
- Parameters for FONLL: $\frac{\langle x \rangle^{np}}{0.93} \stackrel{\epsilon}{0.0004} \stackrel{\alpha}{25.6} \\
 0.95 \quad 0.0002 \quad 37.0 \\
 0.91 \quad 0.0008 \quad 19.2 \\
 \end{array}$
- Central values larger than usual results from fits...
- Uncertainty larger (mostly theoretical)

Effect on p_T^B spectrum at LHC



- Apply smearing to FO b spectrum for LHC $\langle x \rangle^{np} = 0.90 \pm 0.05$
- 5.5% uncertainty on $\langle x \rangle^{np}$ $\rightarrow \sim 20\%$ uncertainty on $d\sigma/dp_T$

• as expected from

$$\frac{\Delta(\sigma)}{\sigma} = (N-1) \frac{\Delta \langle x \rangle^{np}}{\langle x \rangle^{np}}$$

• for NLL,

$$\frac{\Delta \langle x \rangle^{np}}{\langle x \rangle^{np}} = 2\% \Longrightarrow \frac{\Delta(\sigma)}{\sigma} = 7\%$$

No difference between
 Peterson or Kartvelishvili

To understand/ to do

Things to investigate:

- why gap between FO and NLL not covered by scale variations ?
- why FF found harder than fits in literature

Things doable for the Writeup:

- extend uncertainty on p_T^B spectrum to HERA and to FONLL theory
- study factorization
 breaking with Pythia
 at HERA (and LHC?)
- extend to charm ?

Conclusions

• Effect of FF on B-hadron p_T spectra at (HERA)/LHC studied

• Details of $D^{np(x)}$ not relevant, only $\langle x \rangle^{np}$ matters

- $\langle x \rangle^{np}$ extracted from e^+e^- data in different theoretical frameworks: FO NLO, NLL, Pythia6.2
- uncertainty of fragmentation on p_T^B spectrum at LHC evaluated for FO NLO (NLL) to be 20% (7%)
- few things to be studied in more detail...