From HERA to the LHC

John Ellis, DESY, March 23rd, 2005

Preview

- LHC's 'core business': Higgs & Susy
- Importance of understanding QCD
- Parton saturation, RHIC and the CGC
- UHECRs & Forward physics @ LHC
- Diffractive Higgs production @ LHC

Prospects in Higgs Physics

Higgs Detection at the LHC

How Accurately can the Higgs Cross Section be Calculated?

Catani + de Florian + Grazzini + Nason

Accuracy in LHC Determinations of Higgs Couplings

Duhrssen + Heinemeyer + Logan + Rainwater + Weiglein + Zeppenfeld

Theorists getting Cold Feet

 Composite Higgs model? conflicts with precision electroweak data • Interpretation of EW data? consistency of measurements? Discard some? • Higgs + higher-dimensional operators? corridors to higher Higgs masses? • Little Higgs models? extra 'Top', gauge bosons, 'Higgses' • Higgsless models? strong WW scattering, extra D?

Little Higgs Models

- Embed SM in larger gauge group
- Higgs as pseudo-Goldstone boson
- Cancel top loop

 $\delta m_{H,top}^2(SM) \sim (115 GeV)^2 (\frac{\Lambda}{400 GeV})^2$

with new heavy T quark $m_T > 2\lambda_t f \sim 2f f > 1$ TeV

 $\delta m^2_{H,top}(LH) \sim \frac{6G_F m^2_t}{\sqrt{2}\pi^2} m^2_T log \frac{\Lambda}{m_T} \gtrsim 1.2 f^2$

- New gauge bosons, Higgses $M_T < 2 \text{ TeV} (m_h / 200 \text{ GeV})^2$
- Higgs light, other new $M_{W'} < 6 \text{ TeV} (m_h / 200 \text{ GeV})^2$ physics heavy Not as complete as susy: more physics > 10 TeV

Generic Little Higgs Spectrum

UV completion ? sigma model cut-off

1 TeV + colored fermion related to top quark new gauge bosons related to SU(2) new scalars related to Higgs

> 1 or 2 Higgs doublets, possibly more scalars

Loop cancellation mechanisms

Supersymmetry

10 TeV

200 GeV-

Little Higgs

Measuring Little Higgs Couplings

Supersymmetry

Why Supersymmetry (Susy)?

- Hierarchy problem: why is $m_W \ll m_P$? ($m_P \sim 10^{19}$ GeV is scale of gravity)
- Alternatively, why is $G_F = 1/m_W^2 >> G_N = 1/m_P^2$?
- Or, why is

 $V_{Coulomb} \gg V_{Newton} ? e^2 \gg G m^2 = m^2 / m_p^2$ • Set by hand? What about loop corrections? $\delta m_{H,W}^2 = O(\alpha/\pi) \Lambda^2$

- Cancel boson loops fermions
- Need $|m_B^2 m_F^2| \le 1 \text{ TeV}^2$

Other Reasons to like Susy

It enables the gauge couplings to unify

It predicts $m_{\rm H} < 150 \text{ GeV}$

It stabilizes the Higgs potential for low masses

Dark Matter in the Universe

Astronomers say that most of the matter in the Universe is invisible Dark Matter

Lightest Supersymmetric particles ?

We shall look for them with the LHC

Constraints on Supersymmetry

• Absence of sparticles at LEP, Tevatron selectron, chargino > 100 GeV squarks, gluino > 250 GeV Indirect constraints Z 03 (r-based Higgs > 114 GeV, b -> s γ g., - 2 • Density of dark matter lightest sparticle χ : WMAP: $0.094 < \Omega_{h^2} < 0.124$

- 11 659 000 /10-1

Current Constraints on CMSSM

Assuming the lightest sparticle is a neutralino

Higgs Production: CMSSM vs SM

Good news: no suppression – Bad news: cannot distinguish CMSSM

CMSSM vs SM @ LC, yy Collider

Good news: can hope to distinguish CMSSM from Standard Model

Possible CP-Violating Asymmetries

in CP-violating scenario with three-way mixing:
$$\begin{split} &\tan\beta = 50, \ M_{H^{\pm}}^{\text{pole}} = 155 \ \text{GeV}, \\ &M_{\tilde{Q}_3} = M_{\tilde{U}_3} = M_{\tilde{D}_3} = M_{\tilde{L}_3} = M_{\tilde{E}_3} = M_{\text{SUSY}} = 0.5 \ \text{TeV}, \\ &|\mu| = 0.5 \ \text{TeV}, \ |A_{t,b,\tau}| = 1 \ \text{TeV}, \ |M_2| = |M_1| = 0.3 \ \text{TeV}, \ |M_3| = 1 \ \text{TeV}, \\ &\Phi_{\mu} = 0^{\circ}, \ \Phi_A = \Phi_{A_t} = \Phi_{A_b} = \Phi_{A_\tau} = 90^{\circ}, \ \Phi_1 = \Phi_2 = 0^{\circ}, \end{split}$$

Supersymmetric Benchmark Studies

Summary of LHC Scapabilities ... and Other Accelerators

LHC almost `guaranteed' to discover supersymmetry

if it is relevant

Precision Observables in Susy

JE + Heinemeyer + Olive + Weiglein

Sand States

Global Fits to Present Data

Global Fits to Present Data

Preferred sparticle masses for $\tan \beta = 10$

JE + Heinemeyer + Olive + Weiglein

Minimal Supergravity Model

Slepton Trapping at the LHC?

If stau next-to-lightest sparticle (NLSP) may be metastable may be stopped in detector/water tank wait for them to decay: days, weeks

Trapping rate

LHC

Feng + Smith

0.1 kton

300

200

 m_{NLSP}

250

Hamaguchi + Kuno + Nakaya + Nojiri

Kinematics

Something completely different

Ultra-High-Energy Cosmic Rays

Understanding High-Energy Cosmic Rays

(Lack of) Coverage by LHC Detectors

Back to forward QCD

Parton Saturation Effects

Large probability to emit an extra gluon ~ qln(1/x) ~ 1: number of gluons at small x grows, transverse area limited Transverse density becomes large

Non-linear QCD evolution and population growth

Linear evolution

maximum population density

Extraction of Saturation Scale from HERA Data

Gluon multiplication in a limited (nuclear) environment

Color Glass Condensate: confronting the data

Kharzeev, Kovchegov, Tuchin

New Physics in Diffraction?

The Diffractive Menagerie

- Soft diffraction dissociation:
 Peripheral proton-proton collision
 dissociate proton → low-mass system
- Hard diffraction:
 Small colour dipole penetrates proton produces very high-mass system

Soft double diffraction:
 Peripheral proton-proton collision
 produces low-mass central system

Diffractive Higgs Production

Effective Luminosity: Double-Diffractive

Can hope to measure line-shape using forward proton measurements?

Cross Section, CP-Violating Asymmetry for $H_i \rightarrow \tau^+ \tau^-$

Perhaps none of the above?

Black Hole Production at LHC?

Summary

• We do not know what the LHC will find • But HERA physics provides crucial inputs: **Parton distributions** Saturation effects Forward physics is potentially exciting area not covered by present detectors Colour glass condensate **UHECRs Diffractive Higgs production?**

Cambridge: al et Webber

^{, &}lt;sub>T</sub> (CCV)

Black Hole Decay Spectrum

Measuring Extra Dimensions

Cambridge: al et Webber

Higgs Production: CMSSM vs SM

Good news: no suppression – Bad news: cannot distinguish CMSSM

Global Fits to Present Data

Preferred sparticle masses for $\tan \beta = 10$

JE + Heinemeyer + Olive + Weiglein

Global Fits to Present Data

 $(m_{1/2}, A_0)$ planes in CMSSM for tan $\beta = 10, 50$

Example of Benchmark Point

Spectrum of Benchmark SPS1a ~ Point B of *Battaglia et al*

> Several sparticles at 500 GeV LC, more at 1000 GeV, some need higher E

Examples of Sparticle Measurements

Added Value of LC Measurements

-										
	$m_{\rm SPS1a}$	LHC	LC LH	HC+LC		$m_{ m SPS1a}$	LHC	LC	LHC+L	С
h	111.6	0.25	0.05	0.05	H	399.6		1.5	1.5	-
A	399.1		1.5	1.5	H+	407.1		1.5	1.5	
χ_1^0	97.03	4.8	0.05	0.05	χ^0_2	182.9	4.7	1.2	0.08	and the second
χ_3^0	349.2		4.0	4.0	χ_4^0	370.3	5.1	4.0	2.3	
χ_1^{\pm}	182.3		0.55	0.55	χ_2^{\pm}	370.6		3.0	3.0	
\widetilde{g}	615.7	8.0		6.5						
\tilde{t}_1	411.8		2.0	2.0						
$ ilde{b}_1$	520.8	7.5		5.7	\tilde{b}_2	550.4	7.9		6.2	
\tilde{u}_1	551.0	19.0		16.0	\tilde{u}_2	570.8	17.4		9.8	and the second
\widetilde{d}_1	549.9	19.0		16.0	\tilde{d}_{2}	576.4	17.4		9.8	ALL MARKED
\widetilde{s}_1	Determination of CMSSM parameters 7.4 9.8									
\tilde{c}_1	-	SPS1a	StartFit	LHC	Δ_{LHC}	; LC	$\Delta_{\rm LC}$	LH	C+LC	$\Delta_{\text{LH}} - L_{\text{C+LC}}$
e_1	M_0	100	500	100.03	4.0	0 100.03	0.09		100.04	0.08
μ_1	$M_{1/2}$	250	500	249.95	1.8	3 250.02	0.13		250.01	0.11
τ_1	$\tan \beta$	10	50	9.87	1.3	9.98	0.14		9.98	0.14
ν_e	A_0	-100	0	-99.29	31.8	-98.26	4.43	2	-98.25	4.13

Hadron multiplicities: the effect of parton coherence

Nuclear Modification of Hard Parton Scattering

