Working group summary: Diffraction Theory

M. Diehl

Deutsches Elektronen-Synchroton DESY

24 March 2005

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1. Overview

- 2. Theory of and around diffractive Higgs production
 - gluon distribution
 - rapidity gap survival
 - diffractive parton densities
- 3. QCD at high parton densities
 - Saturation, multiple interactions, AGK cutting rules
- 4. Conclusions

Warning and apologies: very selective, often gloss over technical details

(日) (同) (日) (日) (日)

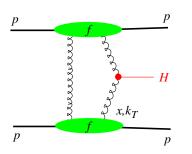
Topics and contributions

- Diffractive Higgs production J Forshaw, G Ingelman, A Kaidalov, P Landhsoff, L Lönnblad, A Martin, L Motyka, R Peschanski
- Diffractive structure functions and parton densities M Arneodo, M Groys, P Newman, A Proskuryakov, F-P Schilling, G Watt, G Wolf
- Diffractive factorization breaking ("rapidity gap survival")
 A Bruni, M Klasen, U Maor, A Mastroberardino, A Prygarin, S Schätzel,
 F-P Schilling
- Multiple interactions J Bartels, K Boreskov, A Kaidalov, H Kowalski, A Sabio-Vera, M Strikman
- Small-x theory (BFKL, nonlinear evolution, saturation)
 J Andersen, D Kharzeev, G Ingelman, E Levin, M Lublinski, C Marquet,
 S Munier, J Raufeisen, A Sabio-Vera, R Venugopalan

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

- Charged current exchange L Adamczyk, R Bellan, P Laycock, K Wichmann
- γp interactions at LHC J Nystrand, K Piotrzkowski
- Diffraction at LHC: generator studies M Boonekamp, B Cox, J Monk, A Pilkington, A Solol, M Tasevsky
- Diffraction at LHC: detectors and triggers B Cox, R Croft, A De Roeck, I Efthymiopoulos, K Eggert, F Ferro, P Grafström, M Grothe, C Hogg, D Macina, M Murray, K Österberg, R Orava, A Panagiotou, M Ryynanen, P v Mechelen
- Forward detectors at HERA V Andreev, A Bunyatyan, X Janssen, M Kapishin, H Kowalski, V Monaco, R Sacchi, K Vervink
- Diffraction at the Tevatron C Avila, D Goulianos

イロン 不同 とくほう イロン


Exclusive Higgs production

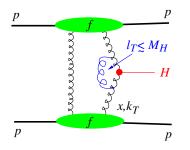
Exclusive channel $p+p \rightarrow p+H+p$ has many attractive features

- mass resolution
- quantum number filter/discriminator J^{PC}
- scenarios beyond standard model
- \rightarrow J Ellis, B Cox, plenary talks

・ロン ・部 と ・ ヨ と ・ ヨ と …

Exclusive Higgs production (very oversimplified)

 $f(x,k_T) =$


unintegrated gluon distribution

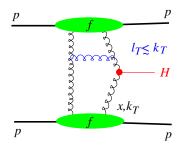
$$\int^{\mu^2} \frac{d^2k_T}{k_T^2} f(x, k_T^2) = xg(x; \mu^2)$$
(roughly)

< ロ > < 同 > < 三 > <

► appears as
$$\int \frac{d^2k_T}{k_T^4} f(x_1, k_T^2) f(x_2, k_T^2)$$

 \rightarrow not dominated by $k_T \sim M_H$
 \rightarrow bad infrared behavior

Exclusive Higgs production (oversimplified)


radiative corrections \rightarrow large Sudakov logarithms \rightarrow cancellations in infrared region Khoze, Martin, Ryskin

- improves infrared behavior
 but retain sensitivity to lowish values of k_T
- appreciable dependence of cross section on precise implementation of resummation, choice of scales, ...

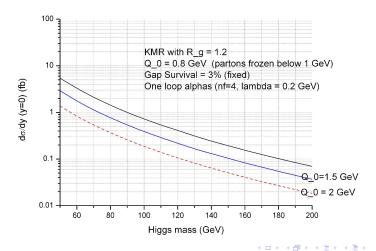
 \rightarrow J Forshaw, L Motyka (Jan meeting)

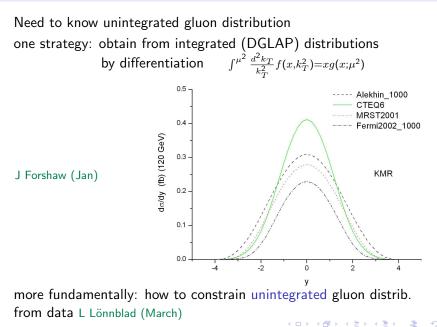
full NLO calculation would be useful

Exclusive Higgs production (oversimplified)

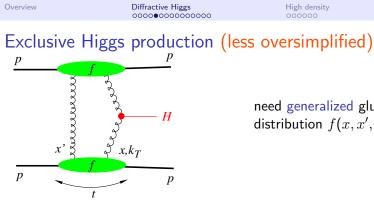
radiative corrections

- \rightarrow large Sudakov logarithms
- \rightarrow cancellations in infrared region


Khoze, Martin, Ryskin


- improves infrared behavior
 but retain sensitivity to lowish values of k_T
- appreciable dependence of cross section on precise implementation of resummation, choice of scales, ...

 \rightarrow J Forshaw, L Motyka (Jan meeting)


full NLO calculation would be useful

Sensitivity to infrared region: Higgs cross section evaluated with cutoff $Q_0 \le k_T$ J Forshaw (Jan meeting)

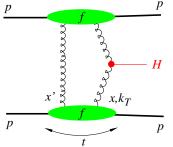
Working group summary: Diffraction

need generalized gluon distribution $f(x, x', k_T^2, t)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

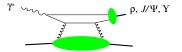
▶ skewness: $x \sim M_H^2/s \approx 10^{-2}$ for $M_H = 120$ GeV, $x' \sim k_T^2 / s \ll x$

► t dependence interplay between t and x: shrinkage $f \sim x^{-\alpha'|t|}$ transformed from t to impact parameter \rightarrow distribution of gluons in transverse plane

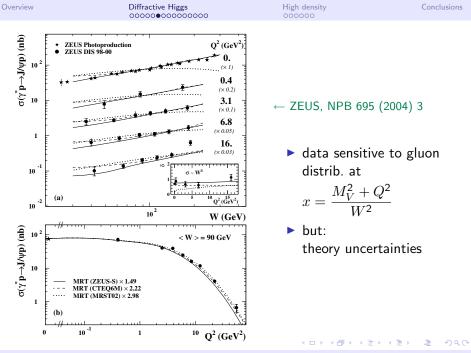

Conclusions

Overview

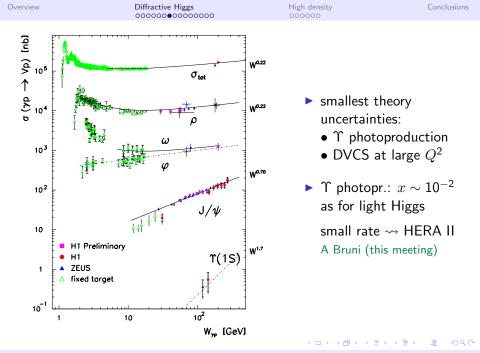
Diffractive Higgs

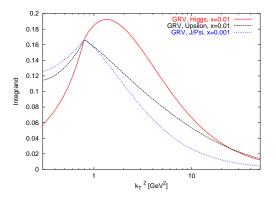

High density 000000 Conclusions

Exclusive Higgs production (less oversimplified)



need generalized gluon distribution $f(x, x', k_T^2, t)$

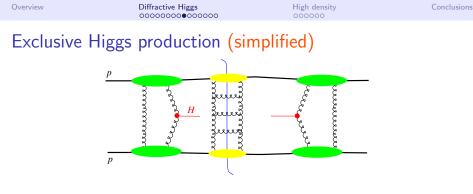

• can measure at HERA: vector meson production and DVCS $\gamma^*p \rightarrow \gamma$


(日)

Working group summary: Diffraction

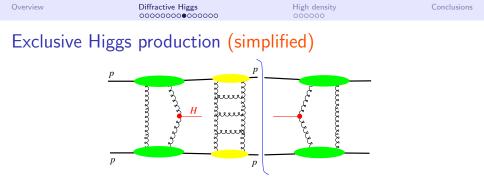
vector mesons at HERA vs. light Higgs at LHC:

similar sensitivity to gluon k_T

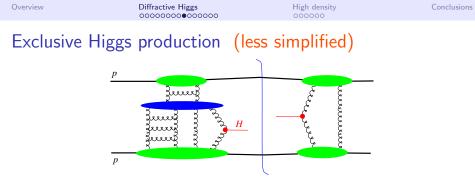

 $\leftarrow \mathsf{L} \; \mathsf{Motyka} \; \mathsf{(Jan)}$

< ロ > < 同 > < 回 > < 回 >

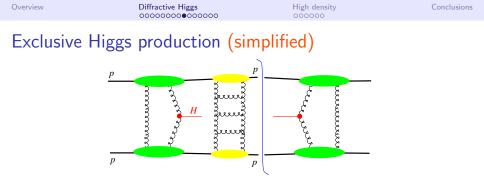
process amplitude $\propto \int d(\log k_T^2) \times \text{Integrand}$


 $(J/\Psi$ and Υ curves: photoproduction) (warning: curve for $k_T < 1$ GeV very dependent on infrared prescription)

ongoing studies L Motyka, T Teubner


- in pp collisions no factorization for events with rapidity gap BIG effets
- culprit: interactions between spectator partons, mainly (but not only) soft

< 17 ▶


- in pp collisions no factorization for events with rapidity gap BIG effets
- culprit: interactions between spectator partons, mainly (but not only) soft
- ► current models based on data for pp elastic/diffractive scattering → U Maor (March, Oct), A Prygarin (Jan)

• • • • • • • •

- in pp collisions no factorization for events with rapidity gap BIG effets
- culprit: interactions between spectator partons, mainly (but not only) soft
- ► current models based on data for pp elastic/diffractive scattering → U Maor (March, Oct), A Prygarin (Jan)
- (is enough?) \rightarrow L Motyka (Jan)

< ロ > < 同 > < 回 > < 回 >

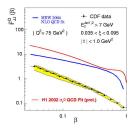
- in pp collisions no factorization for events with rapidity gap BIG effets
- culprit: interactions between spectator partons, mainly (but not only) soft
- ► further input: t dependence of hard subprocess (collision more central → more secondary interactions)
 - \rightarrow vector meson and DVCS data

A A A

The best answer to this problem is to determine the survival probability experimentally.

J D Bjorken, Phys Rev D47 (1992) 101

Survival probability


test models in a variety of processes \rightarrow inclusive diffraction

► Tevatron pp̄ → p + gap + jets + X + p̄ or b̄b or W instead of jets (looking forward to run II data)

CDF diffractive dijets

Diffractive structure function of the antiproton:

$$\hat{F}^{D}_{JJ}(\beta) = \frac{1}{\xi_{\max} - \xi_{\min}} \int_{\xi_{\min}}^{\xi_{\max}} \mathrm{d}\xi \left[\beta g^{D}(\xi, \beta, Q^{2}) + \frac{4}{9} \beta \Sigma^{D}(\xi, \beta, Q^{2}) \right]$$

- Fairly close to result presented by M. Arneodo (October meeting)
- Results for 'survival probability' of the rapidity gap do not contradict calculation by Kaidalov-Khoze-Martin-Ryskin, 2000/1: S² ~ 0.12-0.28

 $\leftarrow \mathsf{G} \; \mathsf{Watt} \; (\mathsf{Jan})$

HERA-LHC Workshop, CERN, Geneva, January 2005-p.3235

Survival probability

test models in a variety of processes \rightarrow inclusive diffraction

- ► Tevatron pp̄ → p + gap + jets + X + p̄ or b̄b or W instead of jets (looking forward to run II data)
- ► essential input: diffractive parton densities from HERA $\gamma^*p \rightarrow X + p, \ \gamma^*p \rightarrow \text{jets} + X + p, \ \gamma^*p \rightarrow \overline{c}c + X + p$ ongoing analyses and fits M Groys, P Newman, A Proskuryakov, G Wolf

diffractive PDF library F-P Schilling

 ▶ diffractive structure function data: gobally good agreement between H1 and ZEUS
 ▶ but notable differences in detail
 → uncertainties on diffractive PDFs, especially on gluon

P Newman, M Groys (this meeting)

further data (high Q^2 , jets, charm, tagged protons) will help

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

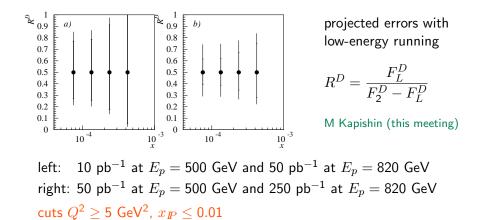
Survival probability

test models in a variety of processes \rightarrow inclusive diffraction

- ► Tevatron pp̄ → p + gap + jets + X + p̄ or b̄b or W instead of jets (looking forward to run II data)
- ► essential input: diffractive parton densities from HERA $\gamma^* p \rightarrow X + p, \ \gamma^* p \rightarrow \text{jets} + X + p, \ \gamma^* p \rightarrow \overline{c}c + X + p$ ongoing analyses and fits M Groys, P Newman, A Proskuryakov, G Wolf

diffractive PDF library F-P Schilling

- \blacktriangleright outstanding theory issues: \rightarrow e.g. G Watt (June, Jan)
 - treatment of diffractive charm

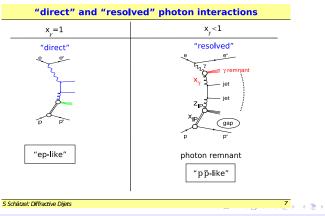

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

.⊒ . ►

direct measurement of F_L^D would provide

- handle on diffractive gluon distribution
- \blacktriangleright information on twist-4 contamination at high β

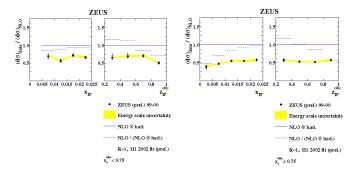


Survival probability at HERA

factorization breaking also expected in γp

→ can test at HERA alone avoid extrapolation of diffractive PDFs to Tevatron kinematics

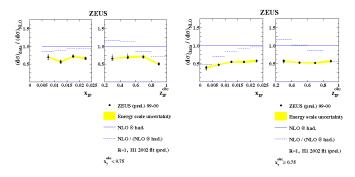
A Bruni, M Klasen, A Mastroberardino, S Schätzel, F-P Schilling



Ratio data / NLO (unsuppressed)

Direct $x_{\gamma} > 0.75$

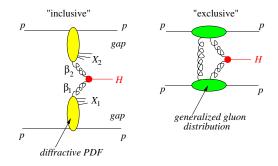
(日)



- Photon PDF uncertainties at high E_T , η^{jet}
- Data lower by a factor ~ 0.5 vs NLO QCD model
- ► for resolved photon suppression, as expected
- ▶ suppression also seen for $x_{\gamma} \rightarrow 1$, not understood

Ratio data / NLO (unsuppressed)

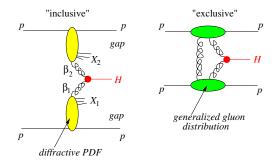
Direct $x_{\gamma} > 0.75$



- Photon PDF uncertainties at high $\text{E}_{\text{T}}, \eta^{\text{jet}}$

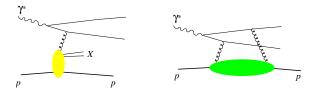
- Data lower by a factor ~ 0.5 vs NLO QCD model
- found by both H1 and ZEUS
- Further studies may help clarify: ratios diffractive/nondiffractive, diffractive c̄c, leading baryons
 → A Kaidalov, this meeting

< □ > < 同 > < 回 > <


Non-exclusive background

- "inclusive" diffractive events become background to "exclusive" ones when remnant systems X_{1,2} become soft
- relevant region for diffractive PDFs:
 - $eta_{1,2}
 ightarrow 1$ and $Q_{1,2}^2 \sim M_H^2$

Image: Image:


Non-exclusive background

- ▶ for "exclusive" mechanism bb̄ is suppressed compared with H, but not for "inclusive" one
 - \rightarrow potentially dangerous background affects Higgs mass measurement, J^{PC} filtering

further studies:

- inclusive vs. exclusive dijets in pp or pp
 (Tevatron run II)
 jet finding algorithms → A Pilkington (Jun)
- > possibility at HERA: inclusive vs. exclusive diffractive dijets

ongoing studies

Working group summary: Diffraction

< ロ > < 同 > < 三 > <

QCD of high parton densities

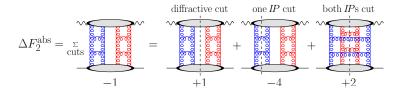
Some (almost) trivialities:

In high-energy collisions multiple interactions are generally present

- ► modify event characteristics compared to single hard scattering → underlying event Summary talk L Lönnblad
- effects cancel in sufficiently inclusive observables (rapidity gaps in pp not "sufficiently inclusive") if hard scale large enough
 - underlies leading-twist factorization
- "large enough" becomes more demanding at smaller x
 - breakdown of leading-twist factorization, parton saturation at high energies

イロト イポト イヨト イヨト

Image: A mathematical states of the state

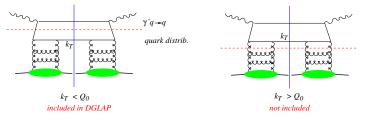

Phenomena are related

- absorptive corrections to inclusive observables
- multiple interactions in single event
- rapidity gap events

can be generated by same diagrams, cut in different ways

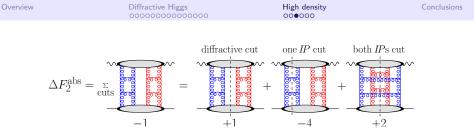
 \rightarrow constraints for theory and modeling

absorptive corrections (to exchange of 1 gluon ladder) in γ^*p


Phenomena are related

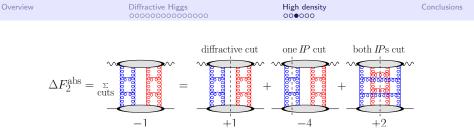
- absorptive corrections to inclusive observables
- multiple interactions in single event
- rapidity gap events

can be generated by same diagrams, cut in different ways


 \rightarrow constraints for theory and modeling

absorptive corrections (to exchange of 1 gluon ladder) in $\gamma^{\ast}p$

 \rightarrow extraction of gluon density at low x and moderate Q^2 G Watt (Jun, Jan)


Working group summary: Diffraction

AGK (Abramovsky, Gribov, Kancheli) cutting rules give relative weights of different cuts

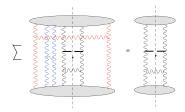
- original rules modified in QCD J Bartels, A Sabio-Vera "two gluons=pomeron" too simple
- essential input: coupling of gluons to projectile can calculate for γ* for p must model/extract from data

(日)

AGK (Abramovsky, Gribov, Kancheli) cutting rules give relative weights of different cuts

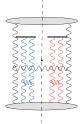
 numerical study in dipole model H Kowalski (Jun) simultaneously good description of inclusive and diffract. DIS F Eisele (plenary talk)

 \rightarrow substantial fraction of multiple interactions at moderate Q^2


at $Q^2 = 4 \text{ GeV}^2$: $\sim \frac{3}{4}$ of events with 1 cut ladder $\sim \frac{1}{8}$ with ≥ 2 cut ladders $\sim \frac{1}{8}$ with no cut ladder (diffractive)

(a)

High density 000●00


applications in $pp\ {\rm scattering}$

J Bartels, this meeting

interactions between colliding protons cancel in 1-jet inclusive cross section (as in collinear factorization)

but still have interactions between jet and one proton

• more complicated results for 2-jet inclusive cross section

first results obtained, but much theory remains to be worked out

perspectives:

- relations between different cuts (i.e. different observables)
- make contact with "DGLAP based approach" to multiple scattering as e.g. implemented in Pythia, Herwig

 → implement theory constraints in models/event generators
- theory of gap survival probability
- $\blacktriangleright\ ep$ as "testing ground" for more complicated pp case

High density 00000●

Nonlinear effects: from *ep* to *pp*

Theoretical framework for scattering at high parton densities: color glass condensate \rightarrow R Venugopalan (this meeting)

- ► strong nonlinear effects for processes with hardness k_T < Q_s saturation scale Q_s(x) grows when x decreases
- \blacktriangleright in low-density limit recover standard BFKL, k_T factorization

イロト イポト イヨト イヨト

High density 00000●

Nonlinear effects: from *ep* to *pp*

Theoretical framework for scattering at high parton densities: color glass condensate \rightarrow R Venugopalan (this meeting)

- ► strong nonlinear effects for processes with hardness k_T < Q_s saturation scale Q_s(x) grows when x decreases
- ► recover color dipole formulation for DIS and ep diffraction same dipole cross section also appears in forward Drell-Yan production → J Raufeisen (Nov)
- ▶ dipole cross section not sufficient input for more complicated final states in pp collisions need more complicated gluon correlation functions color dipoles → color "multipoles"
 possibly can constrain with suitable diffractive final states (work in progress)

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Conclusions

To realize physics potential of diffractive Higgs production
 optimize detectors/triggers
 control backgrounds
 input from HERA:

- generalized gluon distribution
- diffractive parton distributions
- ► rapidity gap survival (HERA→Tevatron and HERA→HERA)
- multiple interactions, absorptive corrections, rapidity gaps
 - become important at high energies and moderate scales
 - are interrelated
 - ▶ of fundamental and of practical interest e.g.: extraction of gluon density from F₂(x_B, Q²)
- theoretical tools available

イロト イポト イヨト イヨト

Conclusions

To realize physics potential of diffractive Higgs production
 optimize detectors/triggers
 control backgrounds
 input from HERA:

- generalized gluon distribution
- diffractive parton distributions
- ► rapidity gap survival (HERA→Tevatron and HERA→HERA)
- multiple interactions, absorptive corrections, rapidity gaps
 - become important at high energies and moderate scales
 - are interrelated
 - ▶ of fundamental and of practical interest e.g.: extraction of gluon density from F₂(x_B, Q²)
- theoretical tools available but much remains to be done for theory and measurement

イロン 不同 とくほう イロン

Special Thanks

- to my co-convenors
- to all those who have contributed to our working group
- to J Bartels, A Bruni, X Janssen, M Kapishin, A Mastroberardino, L Motyka, P Newman, T Teubner, R Venugopalan, G Watt for valuable input to this summary talk

イロト イポト イヨト イヨト