
Summary of WG5 'MC Tools'

Conveners: V. LENDERMANN (H1), A. NIKITENKO (CMS), E. RICHTER-WAS (ATLAS), P. ROBBE (LHCb), M. SEYMOUR (Theory)

VICTOR LENDERMANN University of Heidelberg HERA–LHC Plenary Meeting DESY, Hamburg, Mar 24, 2005

Projects in WG5 'MC Tools'

- PDF libraries
- MC generators, models
- MC running, validation and tuning tools

Physics topics common with WG2

- Multiple interactions / Underlying event
 Multijet final states
- Matrix element parton shower matching
- New developments for parton showers

 $\longrightarrow WG2$ $\longrightarrow WG2$

LHAPDF – Les Houches Accord PDF Library

Started by W. GIELE, continued by M.WHALLEY Replacement for PDFLIB which is no longer maintained

Goals:

- Give access to the latest PDF sets
- Be able to handle the multiple error PDF sets (necessary for LHC!)
- Be more flexible than PDFLIB in updating.

Several version updates during this Workshop

Current version 4 includes:

- Recent and legacy sets by theory groups: CTEQ 4/5/6, MRST 2001/2/3c/4, GRV 98, Alekhin, ...
- Recent fits by HERA collaborations: H1 2000, ZEUS 2002
- Photon and pion PDFs from PDFLIB (necessary for HERA!)

LHAPDF (Continued)

PDFs are included as external files. Two methods:

- ▶ On-the-fly QCD evolution when initialized \longrightarrow small .LHpdf files
- Grids like in PDFLIB

 \longrightarrow small .LHpdf files \longrightarrow big .LHgrid files

LHAGLUE – PDFLIB like interface to LHAPDF by D. BOURILKOV and C. GROUP

The LHAGLUE package, plus a unique PDF numbering scheme, enables LHAPDF to be used in the same way as PDFLIB, without requiring any changes in the generator codes.

Online manual: http://durpdg.dur.ac.uk/lhapdf/

Plans for future:

• • • •

- ► New PDF sets
- New evolution codes
- ► C++ rapper (already have basis, courtesy of S. GIESEKE)

Diffractive PDF Library

F.-P. SCHILLING – talk in WG4 in October 2004

Should provide:

- $\blacktriangleright \mathcal{P}/\mathcal{R} \text{ PDFs} + \text{Errors}$
- Fluxes and all diffraction specific rest

Two approaches possible:

- Provide independent library for diffraction
- Provide add-on for LHAPDF

Time scale still unclear

MC Generators

- ▶ General presentations of generators: Cascade, RapGap, AcerMC, Photos
 ▶ C++ generators: Pythia 7, Herwig++, Sherpa
 ▶ UE models (Pythia 6.3, Jimmy/Herwig) →
 ▶ Predictions for multijet final states at LHC →
 ▶ ME/PS matching
- New developments of parton shower models

 $\longrightarrow WG2$ $\longrightarrow WG2$

RapGap

H. Jung

Applications:

- Inclusive and diffractive DIS
- Inclusive and diffractive photoproduction in *ep*
- Direct and resolved photons
- Choice between MEPS and CDM parton cascades
- QED radiative corrections using HERACLES
- Single diffraction in $p\bar{p}$

New developments:

- Les Houches Accord interface for fragmentation: Choose between PYTHIA 6.2 and Herwig 6.5 – Allows better estimation of hadronisation corrections
- Hadronisation of low mass final states important for diffraction

http://www.desy.de/~jung/rapgap/

AcerMC version 2.0

B. KERSEVAN, E. RICHTER-WAS

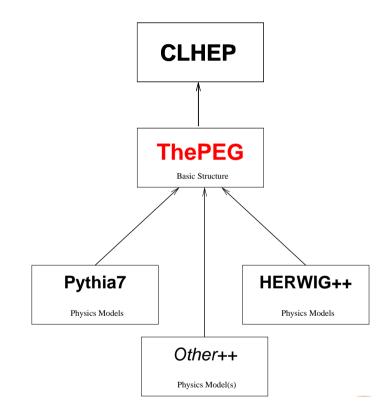
Simulation of background processes for Higgs searches at LHC

Processes:

First studies on inclusive *W* and *Z* production at LHC using ARIADNE (WG2 summary)

http://cern.ch/Borut.Kersevan/AcerMC.Welcome.html

AcerDET


E. RICHTER-WAS

Simplified detector simulation and reconstruction á la ATLAS

- Parametrized resolutions (basic Gaussian shapes)
- Jets reconstruction using cone algorithm
- Crude isolation criteria
- Crude reconstruction of missing energy

ThePEG, PYTHIA 7, HERWIG++

L. LÖNNBLAD, T. SJÖSTRAND, N. LAVESSON ; S. GIESEKE, A. RIBON, P. RICHARDSON, M. SEYMOUR, P. STEPHENS, B. WEBBER

ThePEG library:

Basic infrastructure, Kinematics, Repository, Handler classes, Event record, Particle data

Physics models: PYTHIA 7, HERWIG++, ... (ARIADNE)

> No *ep* versions so far Currently development for LHC

SHERPA

T. GLEISBERG, S. HÖCHE, F. KRAUSS, A. SCHÄLICKE, S. SCHUMANN, J. WINTER

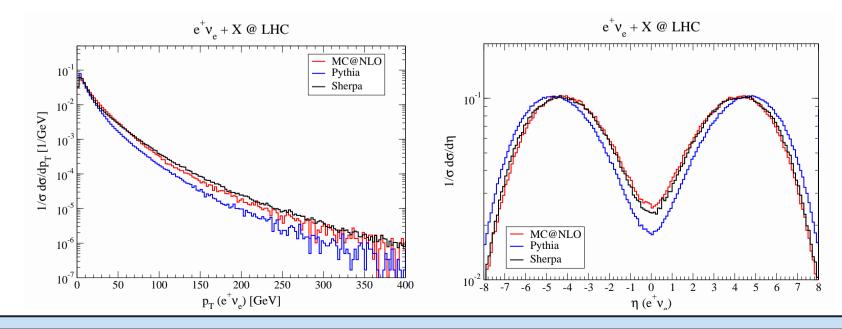
GOAL: full simulation of high energetic particle reactions at existing and future collider experiments, including e^+e^- , $\gamma\gamma$, $e\gamma$, ep, $p\bar{p}$, pp

- ME generator AMEGIC++ providing the MEs for hard processes and decays in SM, MSSM and ADD
- PS module APACIC++
 - containing a virtuality ordered initial and final state parton showers
- combination of MEs and PSs á la CKKW (Results for W/Z+jets production presented)
- Interface to PYTHIA string fragmentation and hadron decays
- Hard UE model AMISIC++ similar to PYTHIA (Comparisons SHERPA ←→ PYTHIA 6.2 presented)

http://www.physik.tu-dresden.de/~krauss/hep

W or Z + Jets Production with SHERPA

S. SCHUMANN


Combine LO Matrix Elements and Parton Showers according to CKKW

Aim:

- Good description of soft and hard region
- Avoid double counting of equivalent phase space configurations
- Universality of fragmentation (energy independent)

Studies:

- Comparisons to Tevatron data on Z and W
- Comparisons to Pythia and MC@NLO at LHC

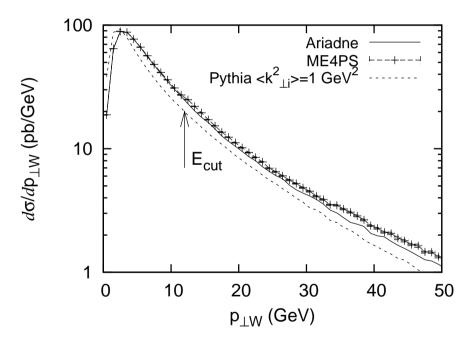
W or Z + Jets Production with SHERPA

Conclusions:

- LHC provides a lot more phase space for extra emissions
- Inclusion of higher order MEs seems to be more important than at Tevatron
- SHERPA with CKKW is able to reproduce the shapes for exclusive and inclusive W/Z + jet production at Tevatron (and LHC)
- However, the rates are not NLO

Outlook:

Comparisons with MLM and ARIADNE


W + Jets Matrix Elements and ARIADNE

N. LAVESSON

Modifications to standard CKKW algorithm in ARIADNE

Studies:

► Comparisons to Pythia on W production at Tevatron run II

Outlook:

- ► W and Higgs production at LHC
- ▶ DIS at HERA
- Implement ARIADNE in C++

РНОТОЅ

P. GOLONKA, Z. WAS et al.

QED radiative corrections for *W* and *Z* decays and also for *t* and *H* decays

Applications:

- Measurements of CKM at *B*-factories
- ▶ W and Z mass and coupling measurements at Tevatron/LHC

Principle of work:

- Reads HEP event record and adds bremstrahlung photons
- Iterative solution like "parton shower"

For leptonic decays 0.1% precision is reached

The iterative solutions can be useful for development of future parton shower models

http://wasm.home.cern.ch/wasm/goodies.html http://piters.home.cern.ch/piters/MC/PHOTOS-MCTESTER/ Non-Markovian Constrained MC Algorithm

for QCD evolution

S. JADACH, M. SKRZYPEK

Basic facts:

- Markovian MC implementing QCD/QED evolution equations is basic ingredient in all parton shower type MCs
- Unconstrained forward Markovian MC, with evolution kernels from perturbative QCD/QED, can only be used for FSR (inefficient for ISR)
- For ISR cascades elegant Backward Markovian MC algorithm by Sjöstrand (Phys.Lett. 157 B, 1985) is widely adopted
- Backward Markovian MC does not solve the QCD evolution eqs. It merely exploits their solutions coming from the external non-MC methods

The problem:

Is it possible to invent an efficient MC algorithm, non-Markovian, solving internally the evolution eqs. by its own?

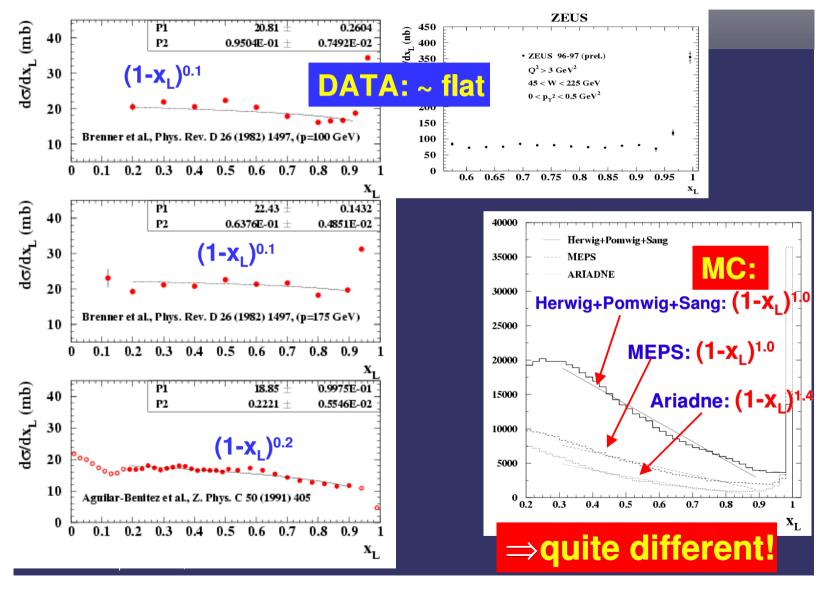
Constraint = the distributions are the same as in normal Markovian evolution, but the final energy $x = \sum z_i$ and the parton type $k = g, q_j, \bar{q}_j$ are predefined, i.e. constrained.

Constrained Non-Markovian MC

Motivation:

- More freedom in the modeling the ISR parton shower, More friendly for inclusion of NLL and NNLL into parton shower MCs
- Easier MC modeling of the unintegrated parton distributions $D_k(p_T, x)$, MC modeling of the CCFM class of the QCD calculations/models

Status:


- ▶ New efficient CMC algorithm for MS DGLAP evolution in October
- Key points are MC efficiency and numerical stability
- Pure bremsstrahlung is the critical part of the CMC algorithm
- Now checked to work efficiently for HERWIG evolution.
 Still to check quark-gluon transitions

Plans:

- Including the rest of NLL corrections into CMC
- Aim: models/programs for unintegrated PDFs for W and Z production at LHC based on CCFM
- Fitting $F_2(x, Q^2)$ of DIS with non-markovian CMC at some point in future

Leading Protons in DIS at HERA

G. IACOBUCCI

Seems to be quite difficult task for tuning

NLOLIB

So far MC@NLO is available only for some specific processes in *pp*. No *ep* version at all. Use analytic calculations

Common framework for running different NLO calculations for various processes Created by T. HADIG and K. RABBERTZ, cont'd by K. RABBERTZ and T. SCHÖRNER

- Container for slightly modified NLO programs
- Setup for compiling and linking these programs on diverse UNIX platforms
- Unified access to the NLO event records
- Unified steering for common parameters and settings
- Unified access to PDF libraries
- Examples how to run it and how to implement your own code
- Allows comparisons to experimental results via HZTool

http://www.desy.de/~nlolib

Significant development of the framework during this workshop: structure, installation, new programs

Implemented programs:

- ▶ DISENT 0.1
- ► DISASTER++ 1.0.1
- ► MEPJET 2.2 (numerical problems)
- RacoonWW 1.1
- ► JetViP 2.1 (not fully finished)
- ▶ NLOJET++ 2.0.1 (work in progress)

Examples:

Event shape calculations for *ep* collisions

NLOLIB Development

• $ee \rightarrow WW \rightarrow 4f$ angular distributions

jet production in epjet production in epjet production in epelectroweak physics in $e^+e^$ jet production in ep and e^+e^-

NLOLIB Wishlist for Future

Work continues to integrate fully NLOJET++, JetVIP and MEPJET. But there are more (in particular *pp*) programs:

- ▶ *pp* program from Klasen
- ► MCFM
- ► JETRAD/DYRAD
- ► PHOX family
- ► FMNR
- ► AYLEN/EMILIA
- ► HVQDIS

Volunteers?

Users/authors of NLO programs are encouraged to port them into NLOLIB

HZTool

by N. BROOK, T. CARLI, H. JUNG, J. BUTTERWORTH, B. WAUGH, et al.

A library of generic fortran routines to allow easy access to experimental published data distributions and to calculate predictions of Monte Carlo generators for these distributions

- Developed at HERA, where MC have difficulties to describe the data, but where MC are needed for precision physics
- Common project between ZEUS and H1 Includes (not yet all) H1 and ZEUS published measurements
- Extended to $\gamma\gamma$ at LEP (OPAL) and some Tevatron data
- Easily extendable to LHC
- One routine per publication includes histos filled with published data and histos being filled by running MCs for comparison

DESY-XX-XXX \iff hzXXXXX.F

Documentation: http://hztool.hep.ucl.ac.uk/

Tutorial by H. JUNG in HERA-LHC June meeting: http://agenda.cern.ch/fullAgenda.php?ida=a041878

Available Routines for Tuning UE/MI Models

Used for MC tuning by J. BUTTERWORTH and M. WING

HZ01225	Di-Jets in γp	H1
HZ01220	Di-Jets in γp and Photon Structure	ZEUS
HZ00035	Di-Jets in γp and Photon Structure	H1
HZ99057	Di-Jets in γp at high E_T	ZEUS
HZ98162	Three-Jets in γp	ZEUS
HZC98113	Di-Jets in $\gamma\gamma$	OPAL
HZ98085	Inclusive D [*] and Associated Di-Jets	ZEUS
HZ98018	Inclusive Jets at High E_T	ZEUS
HZ97196	Di-Jets in γp	ZEUS
HZ97191	Jet Shapes in γp	ZEUS
HZ97164	Inclusive Di-Jets in γp and Parton Distributions in Photon	H1
HZC96132	Inclusive Jets in $\gamma\gamma$	OPAL
HZ96094	Di-Jet Angular Distributions in Resolved and Direct γp	ZEUS
HZ95219	Jets and Energy Flow γp	H1
HZ95194	Rapidity Gaps between Jets in γp	ZEUS
HZ95033	Di-Jets in γp	ZEUS
HZ94176	Inclusive Jets in γp	ZEUS
	Charged Jet Evolution and Underlying Event in $p\bar{p}$	CDF
	Multijet Photoproduction	ZEUS

Many not dedicated UE measurements but "incidently" sensitive to UE models

After the meeting in June 2004

H1

- ► DESY-95-219 : Jets and Energy Flow in γp at HERA, Fig. 4 and Fig. 2 \longrightarrow A. BUNYANTYAN, S. MAXFIELD
- ► DESY-98-148 : Charged Particle Cross-Sections in γp , Fig. 3 (a,b) \longrightarrow S. LAUSBERG, V.L.
- ► DESY-00-085 : Inclusive γp of π^0 in the Photon Hemisphere, Fig. 2, 3, 5, 6 \longrightarrow D. BENECKENSTEIN, V.L.
- ► DESY-02-225 : Inclusive Jet Cross Sections in γp Lots of plots \longrightarrow K. LOHWASSER, V.L.

ZEUS

DESY-95-083 : Photon Remnant in Resolved γp

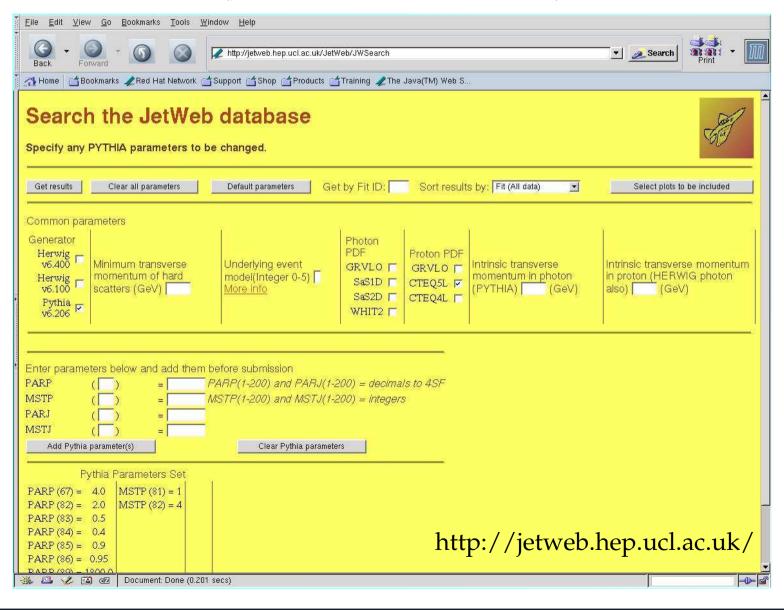
 \longrightarrow J. Butterworth

Heavy Flavours in HZTool

After the October Meeting Basically all open charm and beauty results

H1

no	DESY-04-209	$F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$ at high Q^2	P. D. THOMPSON		
new	DESY-04-156	Inclusive D^+ , D^0 , D_s^+ and D^* + Mesons in DIS	A. W. Jung		
new	DESY-01-105	$D^{*\pm}$ Production in Diffractive DIS	P. D. THOMPSON		
yes	DESY-01-100	$D^{*\pm}$ Production and F_2^c in DIS			
yes	DESY-99-126	Open Beauty Production at HERA			
yes	DESY-98-204	D* Production and Gluon Density			
yes	DESY-96-138	Inclusive D^0 and D^{\pm} Production in DIS			
no	DESY-96-055	Photoproduction of D* Mesons			
+ several preliminary results					


ZEUS

O. GUTSCHE, A. GEISER (WG3)

no	DESY-03-115	charm in DIS		
yes	DESY-98-085	charm in γp		
no	DESY-04-070	beauty in DIS		
yes	DESY-03-212	beauty in γp		
no	DESY-03-015	charm + jets in γp		
yes	DESY-00-166	charm & beauty in γp		
+ several preliminary results				

JetWeb

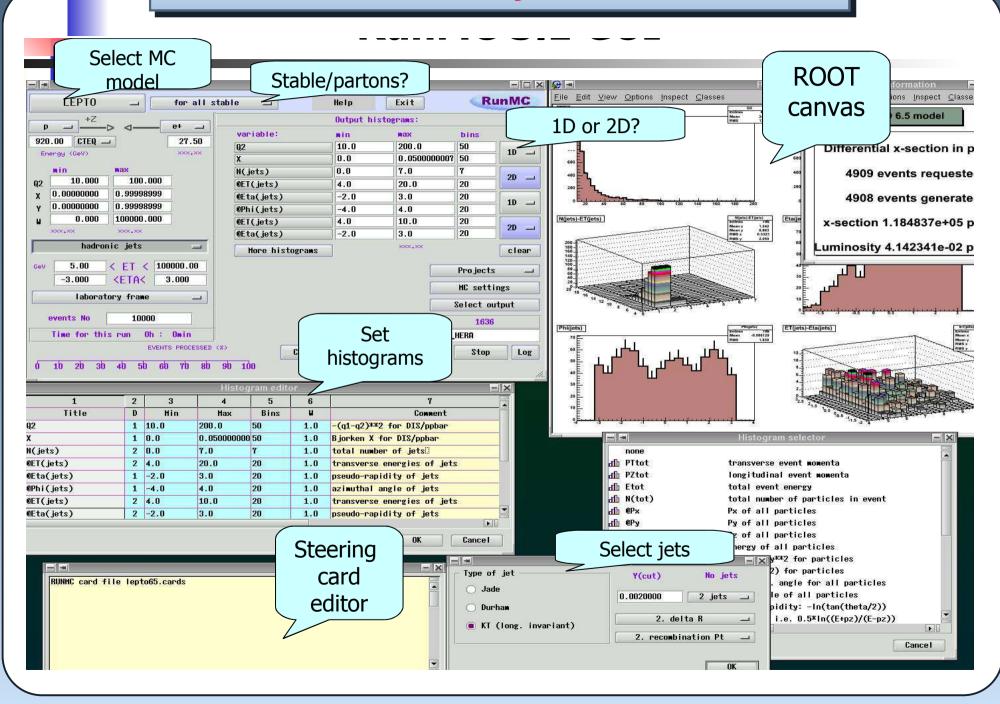
Web server/interface for MC tuning based on HZTool, implemented in Java (J. BUTTERWORTH, B. WAUGH)

JetWeb Future – CEDAR

Combined E-science Data Analysis Resource

- Collaboration between UCL (JetWeb) and Durham (HEPDATA)
 - UCL: J. BUTTERWORTH, S. BUTTERWORTH, B. WAUGH
 - Durham: W. STIRLING, M. WHALLEY
- ▶ First full release in time for LHC start-up
- Three areas:
 - Reaction data: start with HEPDATA (Durham HEP database) migrate to relational database
 - Model validation: start with JetWeb replace Fortran HZTool by OO
 - Code repository with Web and Grid access

HEPDATA: http://www-spires.dur.ac.uk/hepdata/


RunMC

C++ Framework for Running MC Models (S. CHEKANOV)

- Desktop application (Linux, Windows/Cygwin) with graphical front-end
- Interface to major Fortran generators (will be extended to new C++ MCs): PYTHIA, HERWIG, ARIADNE, PHOJET, LEPTO, AROMA, RAPGAP, CASCADE
- ▶ For validations, tuning, comparisons, calculations of correction factors
- ► Fully integrated with the ROOT analysis environment
- Differential cross section calculations, automatic normalizations
- Different types of output (stable, stable charged, partons)
- Histograms can be viewed during event generation
- HZTool is inlcuded
- Further analysis (in C++) can be included as "physics modules". Many C++ equivalents of HZTool utilities are included, e.g.
 - event kinematics,
 - jet finders,
 - event shapes,
 - ...

http://www.desy.de/~chekanov/runmc

RunMC C++ GUI – v 2.1

RunMC Java GUI – v 3.3

JRunMC	- 🗆 X		0.530	Steeri	ng card edit	or	
File RMC project Options Help		File	Options				
Welcome MC model Settings Output	t Options Control						
e- • e+ • CTEQ • CTEQ • E1(GeV): E2(GeV):	for all stable Iaboratory frame	▲ .▼ [Nin]	n	Index I Index II	Value		
250.0 250.0	separate particles 🕤	NO	Parameter	AA	value	- CI	omments
	Particle settings	1 2		0 0			
Steering card	_ and settings	3		0 0			
		4		0 0			
Selected model: Project name: Project name:	default Events No:						
Initial state: e+(250.0 GeV) e-(250.0	GeV)		Save	Exit add	new row) (remove	selected)
Final state: for all stable; jets: none					V	ariables and	d Histogram edi
Output: default.root	run	File	Options				2277
	- tun	PTto	t	transvers	e event 📤	No	Title D
Histograms: 0 histograms		PZto	t	longitudi	nal even	1 Etot	1
Canvas: Show all plots						2 @Py	1
Carrias. Show an proce				total num Px of all		3@Pz	1
Last action: show particle sattings	2/4Mb	@Pv		Py of all		4 @E	1
Last action: show particle settings	2) 100			Pz of all		5 @Py	1
	🔳 Particles: 🗖 🗖 🗙	@E		Energy o	f all part 📓	6 @E	1
	ET(min) 0.0 ET(max) 1000000.0	@Per @Phi		px**2 + sqrt(Perj azimutha	py**2 fo 52) for p al. angle		
	ETA(min) ETA(max) 999.0	@Eta @Raj	eta	pseudo-i			
					Sav	e Exit	remove se
	Exit						

Sbumps

Analysis framework for automatic search and identification of peaks (S. CHEKANOV)

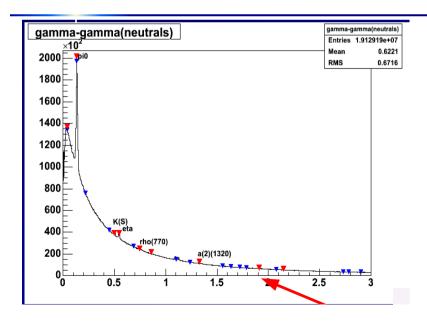
Not MC, but useful tool for searches. Motivation:

- To search peaks in invariant masses is a tedious task (especially if you do not know that your are looking for)
- Need to check many mass assumptions
- ▶ 2,3,4 etc. body decays should be looked at
- Reflections from known states should be removed

Features:

- Written in C++ using ROOT libraries
- Input: 3-momenta + probabilities for each particle
- For given mass assumptions, creates and fills histograms
- Automatically searches for peaks
- Identifies known PDG states and reflections
- Makes reports on unknown states
- Of course, it cannot do full physics analysis!

http://www.desy.de/~chekanov/sbumps/


Sbumps

Approach:

- Fast algorithm using Markov approach for peak searching in presence of background and statistical noise
- It was developed for gamma-ray physics and usually does not work correctly for searches in invariant masses
- Therefore, this algorithm was used only to create seeds with suspected peaks
- Final peaks were identified after analysis of the seed peaks

Example results:

- ▶ 5 peaks are identified!
- 1 peak background shape
- 3 peaks found, but could not be matched with known PDG states – reflections?

Summary of Projects

PDF libraries

Generator and model developments

MC validation, tuning tools

Many developments during this Workshop!

Many fruitful discussions!

Thanks to the organisers!

Thanks to the co-convenors!

Thanks to the participants!

Thank you!