

gg→H for different MCs including CASCADE: uncertainties due to jet veto

Giovanna Davatz, ETH Zurich

HERA/LHC Workshop, DESY 21nd -24th March 2005

- gg \rightarrow H \rightarrow WW \rightarrow lvlv channel needs jet veto
- new: get uncertainty of jet veto efficiency with PYTHIA, HERWIG, MCatNLO and CASCADE
- try to understand different shapes!
- Conclusion

PYTHIA 6.319, HERWIG 6.505 + ME correction, MCatNLO 2.31 and CASCADE 2.009

- NO underlying events
- M(Higgs) = 165 GeV, M(top) =175 GeV
- CASCADE 2.009 with PYTHIA final state parton shower

pdf	MCatNLO: PYTHIA, HERWIG, CASCADE :		CTEQ 5M1 CTEQ 5L
CTEQ5M1 (NLO) CTEQ5L (LO)	α _s (Mz)=0.118 α _s (Mz)=0.127	$\Lambda_{QCD}^4 = 0.326$ $\Lambda_{QCD}^4 = 0.192$	Λ _{QCD⁵} = 0.226 Λ _{QCD⁵} = 0.146
Ласр	PYTHIA: HERWIG: MCatNLO: CASCADE	MSTP(3)=2 (Λ _{QCD} = Λ _{QCD} of pdf) QCDLAM=0.18 LAMDAFIVE=0.226 PARU(112)=0.2	

p_T Higgs spectrum of the 4 Monte Carlos

Efficiency of jet veto with CASCADE

Jet veto at 30 GeV

We get a much nicer spectrum than before! Thank you Hannes!

Why is the efficiency not 1 at p_T Higgs = 0 GeV ?

Possible answer: p_T Higgs balanced by more than 1 jet. Σp_T jets = 0 ($\approx p_T$ Higgs), but at least one jet has a p_T higher than 30 GeV \rightarrow jet veto removes event

 p_T Higgs spectrum for max jet pt > 30 GeV:

more events at low p_T Higgs with a max jet pt > 30 GeV in CASCADE than in the other MCs those events will be removed \rightarrow jet veto for CASCADE more efficient

max jet pt > 30 GeV, p_T Higgs <30 GeV

max jet pt > 30 GeV

Efficiency numbers of the jet veto

Differences vary over the pt spectrum:

Integrated efficiency over whole p_T spectrum and up to a p_T Higgs of 80 GeV:

	ε total	ϵ up to 80 GeV
ΡΥΤΗΙΑ	0.61	0.72
HERWIG	0.54	0.68
MCatNLO	0.59	0.69
CASCADE	0.56	0.65

 \rightarrow efficiency spread $\approx 10\%$

Look at different p_T Higgs regions

A) p_T Higgs < 30 GeV

B) 30 GeV $\leq p_T$ Higgs < 100 GeV

C) p_⊤ Higgs ≥ 100 GeV

A) p_T Higgs < 30 GeV

max jet pt

multiplicity

max jet rapidity

CASCADE harder pt spectrum, less events without jet

B) $30 \text{ GeV} \le p_T \text{ Higgs} < 100 \text{ GeV}$

max jet pt

multiplicity

max jet rapidity

CASCADE has more central jets

C) 100 GeV ≤ p_T Higgs

.....

5

6

4

multiplicity

max jet pt

HERWIG 6,505 + ME corr.

MCatNLO 2.31

PYTHIA 6.319

CASCADE 1.2009 CTEQ5 Cone Algorithm Cone size R = 0.5

p_⊤ seed > 1 GeV

120

140

160

n

1

2

3

|η| jet < 4.5 p⊤ H >= 100 GeV

100

LHC 14 TeV

M_H = 165 GeV

40

20

60

80

max jet pt

 $gg \to H^{^\circ}$

10⁻¹

10⁻²

10⁻³

10

10⁻⁶

1 / N * events / 2 GeV

CASCADE has many jets with high rapidity

-5

-3 -2

2 3 4

1

5

n

max jet rapidity

-1

0.00

How can different rapidity at high pt be explained?

PYTHIA, HERWIG and MCatNLO with DGLAP parton shower. \rightarrow at high rapidity only partons with low pt emitted.

CASCADE CCFM: The cascade is not pt-ordered. There can be jets with high pt produced even at high rapidity (close to beam axis)

Which method is more physical?

Conclusion

- CASCADE has more and harder jets than the other MCs
- Many high p_T jets in CASCADE from high rapidity region
- CASCADE has more central jets than other MCs in low p_T Higgs region
- Overall efficiency spread is ≈ 10 %, also in region important for Higgs signal selection (low p_T)