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Exclusive Hard and Soft Diffraction

low X reactions:
c~0.5pb for E;->60GeV, M(j)~ 200 GeV

Moerl <2
pp => pp + M(soft) c~1ub KMR Eur. Phys J. C23, p 311

clean study of QCD gluon radiation processes in a much larger Q2 and t domain
than at HERA. (Theoretical analysis of HERA data: infinite order radiation

or even saturation processes present at low x)

Study of the transition from small to large distances which is

especially interesting in the t distributions (t is a Fourier Trans. of a distance)

ideal way to search for new resonances and threshold behavior phenomena

pp => pp + Higgs c ~3fb
pp => pp + exotics o ~ ?7?

Central Detector System

Xp=4p/p, p+ 5 Xp = Ap/p, p

X,p ~ 0.002-0.015 \ / X;p ~ 0.002-0.015
Leading proton \ ,// Leading Pf°t<:"
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LHC parameters

Length 26.6 km
Nr. of bunches 2808

Nr. of particle/bunch  1.15 10!
Frequency 40 MHz

Inter-bunch distance 25 nsec

Maximal Luminosity 10%* cm?s-!

TIR TI8



LHC High Luminosity Optics
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Dispersion
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. * — from the talk of
Leading proton acceptance (B* = 0.5 m) K. Osterberg, Manchester

March 2003 for the TOTEM
collaboration
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420 m Detectors

Missing dipole in the lattice — 14 m space . With a bypass ~8 m space
remains for warm detectors sitting in Roman Pots

detector resolution should be better than the beam spread at 420 m

o, =250 um o, ~160 xm
Oy = 4.5 urad

angular measurement can be performed with silicon detectors spaced
8 m apart, with ~10 um resolution. Size of the detectors: ~30 mm * 20 mm

alignment with physics reactions (much easier than at HERA, high statistics)

simple estimate of the proton momentum resolution:

AXpp I Xp ~8% for X, =0.002 o, /3mm
AXjp I Xp ~1.5% for x, =0.01 o, /15mm

Ap, ~ 200 MeV



H1 VFPS at HERA

Cold beam line bypass

Modification of 10m drift segment: horizontal bypass for helium and superconductor lines

1. Roman Pot insert

The Very Forward Proton Spectrometer at H1 Tinne Anthonis



LHC No Pileup Measurement Scenarios

The no pileup situation allows to apply rapidity gap, primary single vertex
and energy matching requirements to select diffractive events.

inclusive and single diffractive events with o =70 mb produce,
atL=10%s1cm?2 => ~ 20 events per bunch crossing

L =10% =>~ 2 events per bunch
probability to have only one vertex is ~ 30%
effective L ~3*10%? or 0.3nb'st

L =2*103 =>~ 4 events per bunch
probability to have only one vertex is ~ 7%
effective L ~ 1.4*10 32

L =4*10 33 =>~ 8 events per bunch
probability to have only one vertex is ~0.25%
effective L ~ 1*10 3!



Background Reactions

Main limits on the beam lifetime at LHC is due to strong interactions o, ~ O(100) mb

G,,;~ O(100) mb

TYvYyvwwvyy

(L=10* cm™sec™) (o =100-10"-10" cm?) =10° events/sec
Beam lifetime  2808.1.15-10™/(2-10° -3600) ~ O(40) hours

Elastic scattering — o, ~ O(30) mb small angular and momentum
deviations. Protons stay inside the acceptance of the ring

Inclusive scattering — ; .~O(50) mb - most of the outgoing particles
have low momentum and large emission angle. All of them will be either

seen in the central detector or captured by the TAN and TAS absorbers.

Proton dissociation — o, ~ 2 O(10) mb for x,, ~0.01-0.3

Main source of the machine background. Leads to a rate of

O(108) forward protons/sec.

Attention!!! It is above the magnet quench limit of 8 108 protons/m/sec
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Physics background from proton dissociation reactions

420 m detector sees protons with x,, ~ 0.002 - 0.015 and oy, ~3 mb ~
At luminosity of 103 s'1cm? there will be ~3 107 protons/sec ~ 1 proton per bunch crossing

However, these protons are produced in a soft interaction together with a particle cloud
of a mass My ~ 700 - 1700 GeV. Such a large mass cannot escape undetected in the central
detector.

In(S/m?) =19

e AN

—_— (M) = 13 e

Single diffractive proton dissociation suppression factors:
rapidity gap ~ exp(-AAy) ~0.006 for A =1.7 and Ay =3
no second event vertex O(1/100)

Total suppression factor ~ 6 10



The ATLAS Detector
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The CMS experiment from the talk of
A. De Roeck

o Tracking
o Silicon pixels
o Silicon strips
o Calorimeters
o PbWO4 crystals
for Electro-magn.
o Scintillator/steel
for hadronic part
0 4T solenoid
o Instrumented iron
for muon detection

FORWARD [ MucncHAMBERS | [ TRackER CRYSTAL ECAL Al
CALOPMETER 7Y

o Coverage

oTracking
ToBinagne . iz 0<Inl<2.5-3
era meter: m ey T .
R e iiicwsrmaemiisnufu  © Calorimetry
O<Inl<5

Main program: EWSB, Beyond SM physics...



Beam Halo background from beam-beam tune shift

In bunch-bunch collision the particle of one bunch see the other bunch as a nonlinear lens.
Focusing properties are changing => protons of large amplitude
are getting out of tune after many crossings

Estimate of the proton loss:  # protons / beam lifetime (40h)

Primary and secondary collimators
beam scratched to 6 and 7 &

New tertiary collimators
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Collimator cleaning inefficiency after 106 ~ 4 10-4

,‘r
2808-1.15-10"-0.63-4-10™

T8 I8 40-3600

1 proton per ~80 bunches at the top luminosity
Presumably even considerably smaller in the 420m region,
in the shadow of the incoming collimator, after D2 (R. Assmann)

=0.5-10° protons/sec




Background Estimation

Example:

pp => pPp+0;erd;er © ~1 nb for E+>20GeV, M(j)~ 50 GeV
Signature:

2 forward protons + 2 central jets at |n| < 2 + 2 rapidity gaps at 2 <|n|< 5
acceptance ~ 100%

Background:
non-diffractive jet production: o ~ 10* nb at the same E; and M(jj)
+ 2 accidental beam halo protons
Non-diffractive jet production can be suppressed by:
rapidity gaps ~ exp(-AAy) ~ 0.006 per gap for A =1.7and Ay =3

probability to have an accidental beam halo proton O(1/80)
matching of energies between the forward proton and CD measurements O(1/10)

Background / Signal ratio = (0.006/800)2 ~ O(10°9)

accidental protons rate is (presumably) overestimated in the 420 m region
further study necessary
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Determination of the Gluon Density and
its evolution is the main highlight of
HERA physics
=> Dboost to the QCD understanding:
possible saturation effects
infinite resummation ....

Can diffractive measurements at LHC
significantly extend the knowledge
of the gluon density?



Computation of Diffractive Processes at LHC

gg ->Jet+Jet

dé 9 7a;
dt 4 E;

P

Khoze - Martin - Ryskin Approach

~
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f

g unintegrated (skewed) gluon densities

obtained from low-x data of HERA

£ (%X, Qu i) = B(t) R, -alsz LT(Q 20 - Xg(x, Q2]

wag (K7) dk? phelark,)
J‘le 27 K IO P, (z)dz

00,1, Q ) = B f, (%, %', =0,Q, 1) b(t) = exp(Bt/2)

T (Qt 1 lu) = exp(_

Note: xg(x,.) and P, drive the rise of F, at HERA
and Gluon Luminosity decrease at LHC



Gluon Luminosity -KMR
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Measurement of exclusive Jet-Jet diffractive
cross sections determines the low-x evolution
of gluon densities in the new Q? region
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@-expansion (1999) ——-- i
NLLg (2003) — }
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Low-x infinite re-summation effects

Ciafaloni, Colferai, Salam, Stasto
Altarelli, Ball, Forte, Thorn

Comment by G. Altarelli:
The puzzle of HERA data is why gluon densities are rising so slowly

and not, as usually stated, so quickly




t — distributions at LHC

t — distributions at HERA

urated

Yp > J/vp
. i =0
with the cross-sections of the O(1) nb ~103C . -
1ol 107 m 170 <W< 230GV ee
andL~1nb's* => ol O J0<W<90GeV ee”
O(107) events/year are expected. %m .2 L do<w<socw
e E
. . . 5 : - "P Sgt &Mﬁj /P§H§RNLEL:RL;
For hard diffraction this allows e Lo IP Sot Wyes
to follow the t — distribution to %“0 RN IP Non—Sat
tnax ~ 4 GeV? © diff
" o~ exp(—4|t))
For soft diffraction t.,, ~ 2 GeV? :
10 'L
1‘0=2; W NO”'SGT
oo gluons
7-distribution of hard processes 2l N
should be sensitive to the evolution R
and/or saturation effects _d Saturated |\ /"
0 gluons 7}
see: ,
. . . Qo v v b v Iy | IR |
Al Mueller dipole evolution, BK equation,and | 05 1 15 2 25

the impact parameter saturation model
for HERA data




Survival Probability
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t — distributions P;.. P, - dependence of the diffractive cross section
at LHC F 1/
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Standard Model Higgs

P,
/
Q HN\,
P>
O+ Selection rule
\ 2 2

QCD Background ~ "% _ %s

E} MZE7

b jets : My =120 GeV o =2 fb (uncertainty factor ~ 2.5)

M,, = 140 GeV 6 = 0.7 fb
My =120 GeV : 11 signal / 3? background in 30 fb!

WW*: M,=120GeVo=0.41b
M, =140 GeV o =11fb
My = 140 GeV : 8 signal / 1? background in 30 fb!

*The b jet channel is possible, with a good understanding of detectors and clever level 1 trigger

*The WW” (ZZ") channel is extremely promising : no trigger problems, better mass resolution at
higher masses (even in leptonic / semi-leptonic channel)

If we see Higgs + tags - the quantum numbers are 0+



Higgs Search

Properties of soft inclusive and single diffraction reactions will be known with
high precision from background studies of the QCD reactions and comparison of
Monte-Carlos with data

Lund approach, Multi-pomeron approach

They are characterized by low-p; particle production and for sd - one side rapidity gaps

High diffractive proton measurement resolution in the Higgs region
(~1.5% instead of ~8% and known My )

This should make possible to recognize diffractive events with at least one (two)
additional background vertices

=> effective luminosity increaseat L= 103 by factor 2 (2.6)
at L=4*10% by factor 5 (17)

=>

Effective Luminosity for diffractive Higgs search O(30-100) fb!



Summary
Large luminosity can be collected in the no-pileup mode, O(10) fb-!?
420m Roman Pot silicon counters together with the central detector
allow clean and precise measurement of double-diffractive exclusive processes
background/signal - O(10-6)
Xxzp resolution ~10-2 %
pr resolution ~ 200 MeV
Alignment of forward counters with single diffractive reactions, o~ O(1) mb

Diffractive LHC ~ pure Gluon Collider

pp -> pp jet+jet - O(107) events under no pileup conditions are expected
Events are fully contained in the detector => high measurement precision

Low-x QCD phenomena can be studied at large Q% ~ O(10000) GeV?
and large

Non-trivial QCD region -  SOLVE QcDI
ideal way to search for new resonances and threshold behavior phenomena

Luminosity for DPE Higgs measurements O(100) fb-! => Higgs measurements



