

Politecnico di Bari \& Sezione INFN, Bari, Italy

CERN, Geneva, Switzerland
Case Western Reserve University, Ohio, USA

Università di Genova \& Sezione
INFN, Genova, Italy
University of Helsinki \& HIP, Helsinki, Finland

Academy of Sciences,
Praha, Czech Republic
Penn State University,
Pennsylvania, USA
Brunel University, Uxbridge, UK

TOTEM forward measurement:

 leading protons updateK. Österberg,

High Energy Physics Division, Department of Physical Sciences, University of Helsinki \& Helsinki Institute of Physics

on behalf of the
TOTEM Collaboration
http://totem.web.cern.ch/Totem/
Diffractive protons @
$\beta^{*}=1540 \mathrm{~m} \& \beta^{*}=0.55 \mathrm{~m}$

TMTN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Experimental apparatus

$$
\begin{aligned}
& \text { T1: } 3.1<\eta<4.7 \text { - CSC's } \\
& \text { T2: } 5.3<\eta<6.5 \text { - GEM's }
\end{aligned}
$$

CMS + TOTEM acceptance

CMS+TOTEM: largest acceptance detector ever built at a hadron collider

TOTEM Trigger \& DAQ are CMS-compatible (RP's up to 220 m within CMS L1 trigger latency)

TMTMN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Proton coordinates @ RP position

$$
\begin{aligned}
& \mathbf{y}(\mathbf{s})=\mathbf{L}_{\mathbf{y}} \Theta^{*}{ }_{\mathbf{y}}+\mathbf{v}_{\mathbf{y}} \mathbf{y}^{*} \\
& \mathbf{x}(\mathbf{s})=\mathbf{L}_{\mathbf{x}} \Theta^{*}{ }_{\mathbf{x}}+\mathbf{v}_{\mathbf{x}} \mathbf{x}^{*}+\mathbf{D} \xi
\end{aligned}
$$

$\beta^{*}=1540 \mathrm{~m}$: maximize L \& minimize v at RP location ($\mathrm{v}_{\mathrm{x}} \approx 0, \mathrm{v}_{\mathrm{y}} \approx 0$ @ 220 m)
Consequences:

- low angular spread at IP: $\sigma\left(\Theta_{x, y}^{*}\right)=\sqrt{\varepsilon / \beta^{*}} \approx 0.3 \mu \mathrm{rad}{ }_{\left(\varepsilon_{\mathrm{N}}=1 \mu \mathrm{~m} \mathrm{rad}\right)}$
- large beam size at IP: $\sigma_{x, y}^{*}=\sqrt{\varepsilon \beta^{*}} \approx 0.4 \mathrm{~mm}$

Reduced \# of bunches $\Rightarrow \mathcal{L}_{1540}=10^{28}-10^{29} \mathbf{c m}^{-2} \mathbf{s}^{-1} \&$ no X-angle
$\beta^{*}=0.55 \mathrm{~m}$: maximize \mathcal{L} at IP \& find RP locations with maximum $|\mathbf{D}|$
Consequences:

- large angular spread at IP: $\sigma\left(\Theta_{x, y}^{*}\right)=\sqrt{\varepsilon / \beta^{*}} \approx 30 \mu \mathrm{rad}$
- small beam size at IP: $\sigma^{*}{ }_{x, y}=\sqrt{\varepsilon \beta^{*}} \approx 16.6 \mu \mathrm{~m}$

$$
\mathcal{L}_{0.55}>10^{31}-10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

TMTM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Leading proton detectors: Roman pots

Measurement of very small p scattering angles (few $\mu \mathrm{rad}$):
Leading proton detectors approach beam to $10 \sigma+0.5 \mathrm{~mm} \sim 1.5 \mathrm{~mm}(220 \mathrm{~m})$

TMTMN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Leading protons at high β^{*} : acceptance

- ~ 90\% of all diffractive protons are seen in the Roman Pots
- proton momentum can be measured with a resolution of few $\cdot 10^{-3}$
- proton acceptance for both beams similar

Low β^{*} optics acceptance study

Acceptance studies updated with newest LHC optics V6.5 (V6.2): $\beta^{*}=0.55$ (0.5) m; $x^{*}=500$ (0) $\mu \mathrm{m}$; beam X-angle=142 (150) $\mu \mathrm{rad}$

TMTM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Hit distributions
$\beta^{*}=0.55 \mathrm{~m}$
RP at 220 m

TMTEN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Acceptance 220 m ($\beta^{*}=0.55 \mathrm{~m}$)

TMTMN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Acceptance $420 \mathrm{~m}\left(\beta^{*}=0.55 \mathrm{~m}\right)$

Acceptance for elastics

TMTMN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC
$\xi \& t$ acceptance 220 m \& $420 \mathrm{~m}\left(\beta^{*}=0.55 \mathrm{~m}\right)$
as input a flat $\log (-t) \& \log (\xi)$ distribution

Conclusions

- Acceptance studies repeated for newest LHC optics.
- Acceptancies for LHC optics V6.2 \& V6.5 quite similar.
- Will be included in L1 \& physics studies for CMS/TOTEM diffractive LOI \& CMS physics TDR

Future

- Resolution studies with newest LHC optics.

Elastic scattering: cross section

TTVW Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Level-1 trigger schemes

Prospects for Double Pomeron Exchange

Double Pomeron exchange: cross section

Momentum loss resolution at 420 m

Resolution improves with increasing momentum loss

Dominant source: transverse vertex position (at small momentum loss) and beam energy spread (at large momentum loss, $420 \mathrm{~m}) /$ detector resolution (at large momentum loss, 215 m \& 308/338 m)

Mass resolution of central system

