Perspectives for diffraction at H1 - □ F₂^D LRG measurements at medium and high Q² - □ F₂^D FPS measurements - □ F_L^D measurements (low E_p running) - Diffractive CC cross sections - ☐ Factorization tests in hadron final states - ▶ D* in DIS and photo-production - di-jets and 3-jets in DIS and photo-production - Leading neutron production # F₂^D measurements Data at Low, Medium and High Q²: - Statistical errors ~ 10-15% - → 3-5% at medium Q² for HERA-2 - FwDet syst, p-diss uncertainty ~ 9% - → diminished by VFPS at HERA-2 - CenDet sys, model dependence ~9% - → could be reduced down to 5% Need more statistics and better model at high β to constrain high twist contribution Data well described by H1 NLO QCD Fit to medium Q² data → diffractive PDF's # F₂^D measurement at High Q² # FPS proton vs Large Rapidity Gap - Large rapidity gap selection: M_Y <1.6 GeV and |t|<1 GeV² - FPS proton selection: $M_Y = m_\rho$ extrapolated to $|t| < 1 \text{ GeV}^2$ - → Good agreement between two methods and two experiments - LRG/FPS ratio - → p-dissociation contribution - FPS measurements: - → constrain IR at high x_{IP} - \rightarrow t-dependence at fixed x_{IP}, β, Q^2 - energy flow as function of rapidity HERA-2 → VFPS #### H1 2002 σ_r^D NLO QCD Fit → Can be applied to test QCD factorization in *ep* final states (charm, di-jets) → Diffractive PDFs: - ✓ Precise measurement of quark singlet distribution - ✓ Gluon distribution dominated → 75±15% - ✓ Large gluon uncertainty at high z - need precision measurement and better model at high β - \rightarrow fit at fixed x_{IP} , more statistics needed, data are limited in (β, Q^2) - → FPS/VFPS: constrain IR contribution, t-dependence for fixed x_{IP} # Reduced E_p and F_L^D measurement $R_D = \sigma_L/\sigma_T = F_L^D/(F_2^D-F_L^D)$ ratio of longitudinal to transverse diffractive cross section 10 pb⁻¹, 500 GeV 50 pb⁻¹, 500 GeV 50 pb⁻¹, 820 GeV 250 pb⁻¹, 820 GeV - Vary s to get σ(β,Q²,x_{IP}) at different y - → Statistical and systematic errors comparable with 50 pb⁻¹ at E_p=500 GeV, R_D measured to 40% ### Another approach: - Interference between transverse and longitudinal photon induced processes leads to modulation in $\cos \phi_{ep}$ - \rightarrow Predicted ~20% for β >0.8 - → VFPS expect to measure $\cos \Phi_{ep}$ in 15 bins (see VFPS talk) ## Differential CC cross sections - ☐ First measurement of differential LRG CC cross sections - ☐ HERA-I data: 14 events - □ RAPGAP with diffractive PDFs from H1 QCD Fit describes LRG CC cross sections - →10 times more statistics expected at HERA-2 - → test diffractive PDFs in weak interactions ## Diffractive D* in DIS - H1 99-00 statistics in DIS / γp: 140 / 80 events - → Direct sensitivity to gluon PDF - → DIS data are in agreement with NLO predictions (PDFs from H1 QCD fit) - → No factorization breaking in DIS - → What about photo-production? - 10 times more statistics expected at HERA-2 - → New FTT trigger with higher efficiency - → p-dissociation constrained by VFPS - possible $F_2^{D,cc}$ (β,Q^2,x_{IP}) measurement ## Diffractive di-jets in DIS and PhP ## DIS and direct γp ## Resolved yp #### **H1 Diffractive DIS Dijets** - NLO predictions based on H1 PDFs describe di-jets in DIS - → no factorization breaking in DIS - Data are factor 0.5 below NLO prediction for resolved and direct photo-production - factorization breaking in γp - Same suppression factor for direct and resolved PhP? #### H1 Diffractive γ p Dijets - expected 3 times more statistics for H1 99-00 data - 10 times more statistics at HERA-2 - → new H1 Jet trigger applied for diffraction - need smaller model uncertainties - include di-jet DIS into QCD fit to constrain gluon? - \rightarrow need data in (z_{IP}, Q^2, x_{IP}) bins - HERA-2: expected amount of 3-jet events sufficient for factorization tests gluon density - Azimuthal correlation between exclusive $\pi^+\pi^-$ (jets) and lepton scattering planes distinguish between un-integrated BGF and 2-gluon exchange - HERA-2: 4σ level effect for 10% correlation in 7 Φ bins based on 250 pb⁻¹ - direct test of 2-gluon model - •study transition between low $P_T(\pi^+\pi^-)$ and high P_T (jets) # di-jets and F₂^{LN} with leading neutron 10^{-2} - Leading Neutron di-jet DIS and PhP data are in agreement with NLO calculations - → No factorization breaking within the errors HERA-2: new forward neutron calorimeter with better energy resolution - 10 times more statistics at HERA-2 - precision is limited by FNC acceptance systematic - measurement of F₂^{LN} and high Q² - measurement of $F_2^{\ \pi}$ as $F_2^{\ LN}/\Gamma(\pi)$ at high β , comparison with fixed target data # Summary - □ F₂^D LRG measurements at medium and high Q² - → extraction of PDFs from NLO QCD fit - □ F₂^D FPS measurements - constrain p-dissociation in LRG - → t-dependence, energy flow in diffraction - □ F_L^D measurements are dependent on low E_p running - ☐ Diffractive CC measurements need HERA-2 luminosity - More precise factorization tests in hadron final states: - ▶ D* in DIS and photo-production - multi-jets in DIS and photo-production - di-jets with leading neutron