- $\sigma(t\bar{t})$ measurement and interpretation will be dominated by experimental and theoretical systematics
- $\sigma(t\bar{t})$ measurement provides:
 - \Rightarrow test of pQCD
 - \Rightarrow indirect determination of m_t ($\delta m/m = 0.21\delta\sigma/\sigma$)
 - \Rightarrow anomalous total $t\bar{t}$ rate could be a manifestation of New Physics

$$\sigma(t\bar{t})_{\rm LHC} = 830 \pm 12\%$$
 pb

- differential distributions: $p_{\top}(t, t\bar{t}), M(t\bar{t}): \Rightarrow$ new heavy resonances: Z', X^0 , graviton
- at present full NLO, $\mathcal{O}(\alpha_s^3)$ calculations are available for $\sigma(t\bar{t})$ and $d\sigma/dX$
 - \diamond total scale uncertainty $\Rightarrow \pm 6\%$
 - \diamond uncertainty due to PDF < 10%
 - \diamond PDF uncertainty could be reduced significantly in the ratio, like $\sigma(t\bar{t}) / \sigma(W, Z, jet, ...)$
 - \diamond uncertainty due non-QCD corrections (EW, Higgs, SUSY, etc) are rather small (1-2%)
- for $d\sigma/dP_T(t)$ the uncertainties are slightly larger
 - \diamond scale uncertainty $\Rightarrow \pm 15\%$
 - \diamond uncertainty due to PDF < 10%