
Enabling Grids for E-sciencE

www.eu-egee.org

XML

Richard Hopkins
National e-Science Centre, Edinburgh
February 23 / 24 2005

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 2

Enabling Grids for E-sciencE

Richard Hopkins

OUTLINE

• Goals
– To understand the structure of an XML document

• Outline
– Philosophy
– General Aspects
– Prolog
– Elements
– Namespaces
– Concluding Remarks

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 3

Enabling Grids for E-sciencE

Richard Hopkins

A Markup Language

XML = eXtensible Markup Language

• “Markup” means document is an intermixing of
– Content – the actual information to be conveyed - payload
– Markup – information about the content - MetaData

<date>22/10/1946</date>
<date> … </date> is markup – says that the content is a date

– Self-describing document
– date is part of a markup vocabulary –

a collection of keywords used to identify syntax and semantics of
constructs in an XML document

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 4

Enabling Grids for E-sciencE

Richard Hopkins

Extensibility
XML = eXtensible Markup Language

• “Extensible” means the markup vocabulary is not fixed
• Compare with similar NON-extensible langhuage

– HTML (Hypertext Markup Language)
– Fixed markup vocabulary e.g

<p> This is a paragraph. I like it. </p><p> This is
 another paragraph </p>

– A presentation language for describing how a document should be
presented for human consumption –

This is a paragraph. I like it.

This is another paragraph
– For HTML the language is fixed and implicit in the fact that this is an HTML

document – single-language document
• XML requires explicit definition of the language
• One document can combine multiple languages

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 5

Enabling Grids for E-sciencE

Richard Hopkins

Multi-lingual Documents

• businessForms:purchaseOrder
– This is an instance of the purchaseOrder construct within the

businessForms language
• BusinessForms (mythical)

– A language defining structure of business documents
– For business interoperability
– Doesn’t prescribe the language of individual items such as dates

• Language names are actually universally unique URIs –
www.DesperatelyTryingToStandardise.org/BusinessForms - see later

<businessForms:purchaseOrder>
<date> <USnotations:date> 10/22/2004 </..></..>
<product> <businessForms:barCode>123-768-252 </..></..>
<quantity> <metricMeasures:kilos> 17.53 </..></..>

</..>

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 6

Enabling Grids for E-sciencE

Richard Hopkins

Multilingual Pros & Cons

• Separation of concerns – Design Factoring
– Design of purchase order structure and date format are independent

concerns
– Re-use of language definitions, e.g. date formats in many languages
– Extensibility – Purchase order accommodates new product

identification schemes (e.g. ISBN for book stores)
• Of course, only works if both ends “understand” all languages

used
• Makes things more complex –

– Creating and identifying the languages

<businessForms:purchaseOrder>
<date> <USnotations:date> 10/22/2004 </..></..>
<product> <businessForms:barCode>123-768-252 </..></..>
<quantity> <metricMeasures:kilos> 17.53 </..></..>

</..>

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 7

Enabling Grids for E-sciencE

Richard Hopkins

Types of XML Language
• Fundamental Standards, e.g.

– SOAP
soap-envelope:header soap-envelope:body
soap-envelope - the language for soap messages
A soap message is an XML document and its parts are identified
using this vocabulary

– Goal is a factoring that gives pick-and-mix of combinable standards
– Associated with any WS standard will be a Schema definition of its

XML language
….
• Community conventions

– Perhaps, our BusinessForms language
….
• Specific Application Language

– myProgram:parameter1
– The language used in invoking particular operations of a web service

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 8

Enabling Grids for E-sciencE

Richard Hopkins

Human & Machine Oriented

• Human readable
– Sort of - OK with decent editor
– Is de-buggable
– Important for meta-data

documents,
E.g. WSDL

• Machine processable
Self description enables
– General tools for producing and

consuming XML documents

• Verbose
– OK except for large data
– Messages may have

attachments not in XML

How it really looks
<businessForms:purchaseOrder>

<date>
<USnotations:date>

10/22/2004
</USnotations:date>

</date>
<product>

<businessForms:barCode>
123-768-252

</businessForms:barCode>
</product>
<quantity>

<metricMeasures:kilos>
17.53

</metricMeasures:kilos>
</quantity>

</ businessForms:purchaseOrder >

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 9

Enabling Grids for E-sciencE

Richard Hopkins

Philosophy Summary

• XML goals
– Self-describing documents
– Hierarchic structure
– Enabling multiple languages
– Human readable and reasonably clear
– Easy to write programs that generate them
– Easy to write programs that process them

• For humans – easier to read than to write
– Leave detailed document creation to tools
– But sometimes necessary to read them – particularly meta-data

such as WSDL
– Often need to understand how to design them

• So rest of talk deals with some nitty gritty

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 10

Enabling Grids for E-sciencE

Richard Hopkins

GENERAL EMENTS

• Goals
– To understand the structure of anXML

document
• Outline

– Philosophy
– General Aspects
– Prolog
– Elements
– Namespaces
– Concluding Remarks

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 11

Enabling Grids for E-sciencE

Richard Hopkins

Syntax

• Syntax
– I will give syntax definitions of constructs
– Mainly for your retrospective use
– This uses notation similar to that used in the standard

http://www.w3.org/TR/2004/REC-xml-20040204 (Ed. 3, Feb ’04)
– I will use some non-standard notation to make it a bit easier

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 12

Enabling Grids for E-sciencE

Richard Hopkins

Syntax

[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?
[23] XMLDecl ::= <?xml VersionInfo EncodingDecl? SDDecl S? ?>

[27] Misc ::= Comment | PI | S /*syntax comment*/

• [22] definition number – sequentially numbered in the spec.

• Prolog ::= construct is defined to be

• XMLDecl include anything this construct (unerlined) can be

• <?xml itallic (times): exactly this (non-standard, spec. uses ‘>?xml’)

• (..) grouping (bold)

• ? * + | ? optional, * 0 or more, + 1 or more, | alterantives

• “’ …. “’ content in matching quotes – “…” or ‘…’ (non-standard)

• … text with some natural restrictions (non-standard)

• … as … but allowing references (non-standard)

• /* … */ a comment on the syntax

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 13

Enabling Grids for E-sciencE

Richard Hopkins

Miscellaneous items

• A miscellaneous item is something outside the main structure –
• S Is white space –

– henceforth will ignore this aspect and leave it to common sense
– there are specific rules

• Other two are “explanatory” material
• Comment – for human consumption
• PI – Processing Instruction

– For S/W consumption
– Information to assist the S/W that is processing the XML

[27] Misc ::= Comment | PI | S

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 14

Enabling Grids for E-sciencE

Richard Hopkins

Comments

[27] Misc ::= Comment | PI | S
[15] Comment ::= <! – – … – – > /* … excludes -- */

• A valid comment
<!-- This is a comment -->

• An invalid comment
<!--This is -- not a comment --->

• The “natural” restriction is –
you can’t have -- in a comment,
except as the --> terminator

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 15

Enabling Grids for E-sciencE

Richard Hopkins

Processing Instructions

• Instructions to help the processing S/W
• PITarget identifies the intended S/W

E.g.
<?xml-stylesheet type=“text/ccs” href=“greet.ccs” ?>

• There may some S/W processing this XML to present it in human-
readable form, using stylesheets to control formatting.

• Tells such S/W where the stylesheet is and what type it is.
• XML is a reserved target name – standard instructions for basic

XML processing. Likewise xml, XmL, xMl etc.

[27] Misc ::= Comment | PI | S
[16] PI ::= <? PITarget … ?> /* … excludes ?> */

[16] PITarget ::= Name /*not xml or XmL etc. */

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 16

Enabling Grids for E-sciencE

Richard Hopkins

PROLOG

• Goals
– To understand the structure of anXML document

• Outline
– Philosophy
– General Aspects
– Prolog
– Elements
– Namespaces
– Concluding Remarks

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 17

Enabling Grids for E-sciencE

Richard Hopkins

Document Structure

Main structure of document is
• Prolog – like headers
• Element – the actual document

[1] document ::= prolog element Misc*
[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?
[23] XMLDecl ::= <?xml VersionInfo EncodingDecl? SDDecl S? ?>

<?xml version=“1.0” encoding=“UTF-8” ?>
<!- - This is an example XML document - ->
<?xml-stylesheet type=“text/ccs” href=“greet.ccs” ?>

<purchaseOrder> … </purchaseOrder>

prolog

Root element

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 18

Enabling Grids for E-sciencE

Richard Hopkins

The Prolog

• <?XML ..?> PI is optional, but should be there;
– if so must be first
– gives version number – must be 1.0 (for the 1.0 standard)
– Could give the character encoding used –

default is UTF-8, or something specifed at outer level (e.g HTTP header).
ASCII is sub-set of UTF-8

– Doctypedecl - To do with Document Type Declarations (DTDs) –
We are not using these, so ignore

– SDDecl – standalone declaration – not clear when using schemas

[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?
[23] XMLDecl ::= <?xml VersionInfo EncodingDecl? SDDecl ?>

<?xml version=“1.0” encoding=“UTF-8” ?>

<!- - This is an example XML document - ->
<?xml-stylesheet type=“text/ccs” href=“greet.ccs” ?>

Followed by:
• Other PIs
• Comments

Optional
XML PI

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 19

Enabling Grids for E-sciencE

Richard Hopkins

ELEMENTS

• Goals
– To understand the structure of anXML document

• Outline
– Philosophy
– General Aspects
– Prolog
– Elements
– Namespaces
– Concluding Remarks

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 20

Enabling Grids for E-sciencE

Richard Hopkins

Basic Element Structure

• Primary element structure –
– Start Tag – <…>

Name of element
Zero or more attributes – uniquely named; order insignificant

– Content – possibly nested elements, and other things
– End Tag - </ … >

Name – MUST be same name as in matching Start Tag
• Like HTML – but stricter – must have end tag

<Invoice customerType=“trade” dateStyle=“US”>

….

</Invoice>

[1] document ::= prolog element Misc* /*this is root element*/

Start tag

End tag
Content

name attribute Attribute: name-value pair

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 21

Enabling Grids for E-sciencE

Richard Hopkins

Attributes

• A name-value pair that is included in the start tag of an element
• Name is part of specific language
• Value may also be part of a specific language – QName – qualified name
• More properly the above might be

< BusinessForms:Invoice
BusinessForms:customerType =“BusinessForms:trade”
BusinessForms:dateStyle=“USnotations:date”>
…

</BusinessForms:Invoice>
• This starts to get convoluted – necessary for designing for extensibility

[41] Attribute ::= Name = AttValue
[10] AttValue ::= ‘” … ‘” /* excludes ‘” < & */

/*allows defined characters */

<Invoice customerType=“trade” dateStyle=“US”> …. </Invoice>

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 22

Enabling Grids for E-sciencE

Richard Hopkins

Element Tags

Empty Element Tags –
<account accNo=“17-36-2” terms=“days31”/>

• Same as
<account accNo=“17-36-2” terms=“days31”>
</account >

• Shorthand for element with no content – indicated by /> not >

[39] element ::= STag content ETag

| EmptyElementTag

[40] STag ::= < Name (Attribute)* >
[42] ETag ::= </ Name >

[40] EmptyElementTag ::= < Name (Attribute)* />

<Invoice customerType=“trade” dateStyle=“US”>
<account accNo=“17-36-2” terms=“days31”/>

….
</Invoice>

Start tag

End tag

Content
Empty Element
Tag

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 23

Enabling Grids for E-sciencE

Richard Hopkins

Element Content
[39] element ::= STag content ETag | EmptyElementTag

[43] content ::= …? (contentItem …?)*
[43] contentItem ::= PI | Comment | Element | CDSect

<Invoice customerType=“trade” dateStyle=“US”>
<account accNo=“17-36-2” terms=“days31”/>
<?billing Use Direct Debit>
<!- - There now follows a list of items - ->
<item> <date>10/22/04</date> … </item>
<item> <date>10/24/04</date> … </item>
The above are perishable &linebreak; Watch out!
<item><date>10/29/04</date> … </item>
...

</Invoice>

Elements,
Non-unique
names,

Order is
significant

Comment

Processing
Instruction

Character
Content

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 24

Enabling Grids for E-sciencE

Richard Hopkins

Character Data Section

• To make it easier to include characters which have special
significance within XML – everything is taken literally except]]>

• Alternative is -

[43] contentItem ::= PI | Comment | element | CDSect
[18] CDSect ::= <![CDATA[…]]>

…
<item> <date>10/24/04</date> … </item>

<![CDATA[Some funny characters: < and &]]>

<item><date>10/29/04</date> … </item>
...

…
<item> <date>10/24/04</date> … </item>

Some funny characters: < and &

<item><date>10/29/04</date> … </item>
...

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 25

Enabling Grids for E-sciencE

Richard Hopkins

Mixed Content

• This is Mixed Content –
– Both direct character data and child elements (often excluded)

• Generally a bad idea for web services documents
• Better is each content item is either

– Complex – all child elements
– Simple – direct character data

<Invoice customerType=“trade” dateStyle=“US”>
<item> <date>10/24/04</date> <price> 17.35 </price> … </item>
The above are perishable &linebreak; Watch out!
<item><date>10/29/04</date> <price> 2173.35 </price> … </item>

</Invoice>

<Invoice customerType=“trade” dateStyle=“US”>
<item> <date>10/24/04</date> <price> 17.35 </price> … </item>
<noteLine>The above are perishable &linebreak; Watch out!</noteLine>

<item><date>10/29/04</date> <price>2173.35</price> … </item>
</Invoice>

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 26

Enabling Grids for E-sciencE

Richard Hopkins

Attribute vs Child

Pure child element approach –
no attributes anywhere

<Invoice>
<customerType> trade </customerType>
<dateStyle> US </dateStyle>
<item>

<date> 10/24/04 </date>
<price>

<currency> Euro </currency>
<amount> 17.34 </amount>

</price>
…

</item>
…

</Invoice>

<Invoice
customerType=“trade”
dateStyle=“US” >

<item
date=“10/24/04”

price-currency=“Euro”
price-Amount=“17.34”

…
/>

…
</Invoice>

Maximum attribute approach -
use attributes wherever possible

Can have unbounded number of item children
To use attribute approach for item would require defining infinite attributes

item1-date item2-date …. Attribute names are unique within a tag
Not possible

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 27

Enabling Grids for E-sciencE

Richard Hopkins

Attribute vs Child
• Use Attributes for “control” information

– Affects how we interpret/process the data
– Typically a limited number of standard values – Euro, USDollar, ..
– Often essentially “type” info

• Use children for component data
– Arbitrary values within the type (any date, any integer, any general string, …)

• Distinction is fuzzy rather than absolute

<Invoice customerType=“trade” dateStyle=“US”>
<item>

<date> 10/24/04 </date>
<price currency=“Euro”> 17.34 </amount>
…

</item>
…

</Invoice>

Recommended style

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 28

Enabling Grids for E-sciencE

Richard Hopkins

Notation

• Will use XML a lot –
– Schemas, WSDL; Soap messages;

• Generally will use indentation to indicate structure and abbreviate End
Tags to just </>

• Always have to actually put name in end tag !!!!

<Invoice customerType=“trade” dateStyle=“US”>
<item>

<date> 10/24/04 </>
<price currency=“Euro”> 17.34 </>
<productCode> 17-23-57 </>
<quantity> 17.5 </></>

<item>
<date> 10/24/04 </>
<price currency=“Euro”> 17.34 </>
<productCode> 17-23-57 </>
<quantity> 17.5 </></></>

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 29

Enabling Grids for E-sciencE

Richard Hopkins

NAMESPACES

• Goals
– To understand the structure of anXML document

• Outline
– Philosophy
– General Aspects
– Prolog
– Elements
– Namespaces
– Concluding Remarks

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 30

Enabling Grids for E-sciencE

Richard Hopkins

Namespaces

• A namespace (= “language”)
– Does define a collection of names (vocabulary)

For UK : {address, county, postCode, …. }
– Would usually have an associated syntax (e.g. Schema definition)

address = … county, postCode, …
Syntax may be available to S/W processing it

– Implies a semantics – the (programmer writing) S/W processing a
UK:address knows what it means.

– Provides a unique prefix for disambiguating names from different
originators

UK vs US vs INT

<invoice> <!-- INT = International -->
<deliveryAddress>

<UK:address> …<INT:street>…</> …<UK:county>…</> <UK:postCode>…</></>
<billingAddress>

<US:address> …<INT:street>…</> …<US:state>…</> <US:zip>…</> </>
…. …. </>

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 31

Enabling Grids for E-sciencE

Richard Hopkins

Namespace Names

• To get uniqueness of namespace name, use a URI
– UK:postCode is really

www.UKstandards.org/Web/XMLForms:postCode
(mythical)

– The URI might be a real URL, for accessing the syntax definition,
documentation, ….

– But it may be just an identifier within the internet domain owned by
the namespace owner

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 32

Enabling Grids for E-sciencE

Richard Hopkins

Namespace Names
• To get uniqueness of namespace name, use a URI

– UK:postCode is really
www.UKstandards.org/Web/XMLForms:postCode

• But www.UKstandards.org/Web/XML/Forms:postCode is
– Tediously long to use throughout the document
– Outwith XML name syntax

Namespaces are not part of XML
A supplementary standard http://www.w3.org/TR/REC-xml-names

A W3C recommendation
• In an XML document

– declare a namespace prefix, as an attribute of an element
xmlns:UK=“www.UKstandards.org/Web/XML/Forms”

– then use that for names in that namespace - UK:postCode
UK:post code is called a QName (qualified name)

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 33

Enabling Grids for E-sciencE

Richard Hopkins

Namespace Prefix Declarations

• Namespace declaration occurs as an attribute of an element
– i.e. within a start tag

• Scope is from beginning of that start tag to matching end tag
– Excluding scope of nested re-declarations of same prefix

• Can declare a default namespace
– xlmns=“www/3” – this is the name space for all un-qualified names in the

scope of this declaration, eg. Street
– But not for attributes – if no prefix, no namespace

<BF:invoice … xlmns:BF=“www/1” xlmns:UK=“www/2” xmlns=“www/3”>
<BF:deliveryAddress>

<UK:address> …<street>…</> …<UK:county>…</> <UK:postCode>…</></>
<BF:billingAddress xlmns:US=“www. …” >

<US:address > …<street>…</> …<US:state>…</> <US:zip>…</> </>
…. …. </BF:invoice>

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 34

Enabling Grids for E-sciencE

Richard Hopkins

Overriding namespace declarations

• xmlns:s1=“www/1” Re-defines explicit namespace
• is bad idea –Unnecessary Confusion

<Document xmln:s1=“www.1 xmlns=“www/2” >
< thing > … <s1:thing> … </></>
< thing xmlns:s1=“www/1” > … <s1:thing > </></>
< thing > … <s1:thing> … </></> </>

<Document xmlns=“www/me” >
< thing > … <thing> …</></>

<!- - following is presentation material in xhtml –
default names space changed - ->

< thing xmlns=“www/xhtml” > … <thing > </></>
< thing > … <thing> …</></> <

• xmlns=“www/xhtml” Re-defines default namespace - reasonable

• Note if no default declared, then un-prefixed name has no namespace!

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 35

Enabling Grids for E-sciencE

Richard Hopkins

NAMESPACES

• Goals
– To understand the structure of anXML document

• Outline
– Philosophy
– General Aspects
– Prolog
– Elements
– Namespaces
– Concluding Remarks

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 36

Enabling Grids for E-sciencE

Richard Hopkins

Well-formed and Valid

• Well-formed means it confoms to the XML syntax, e.g.
– Start and end tags nest properly with matching names

• Valid means it conforms to the syntax defined by the
namespaces used
– Can’t check this without a definition of that syntax –

Normally a Schema
DTD (document Type Definitions) – deprecated
Others type dfinition system

• – some more sophisticated than Schemas

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 37

Enabling Grids for E-sciencE

Richard Hopkins

Final Comments

• A specialisation of SGML – a very general document markup
language – any XML document is a an SGML document

• This is XML 1.0 Defined by WG3 – a recommendation
http://www.w3.org/TR/2004/REC-xml-20040204 (Ed. 3, Feb ’04)

• Specification of the standard has a lot to do with DTDs which we
have been ignoring – assume using Schemas instead

• A generalisation of HTML
But not an actual extension.
An HTML document is not an XML document
There is a XML specialisation XHTML which gives HTML
functionality

• Definitions are now in terms of Infosets – an abstraction of XML
with XML being the standard representation

Web Services and WSRF, 24/25 Feb 2005, NeSc -- XML 38

Enabling Grids for E-sciencE

Richard Hopkins

The End

THE END

