Electron Cloud Mitigation (20th-21st November 2008) ECM'2008

"RF breakdown: Present status and where are used we heading" We heading David Raboso (ESA)

Objectives of this presentation

•Problem areas

•New findings in the parameters affecting the Multipactor breakdown

•New lines of investigation at ESA or funded by ESA

Prediction software and testing techniquesECSS

•Corona

Multipactor Breakdown consequences

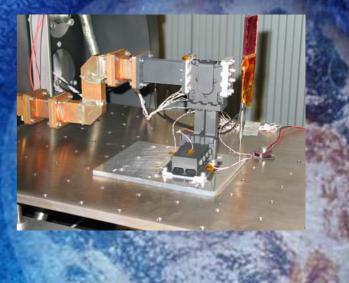
•Noise that effects receive band sensitivity and quality of the transmitted data.

•Harmonic generation

•RF power reflected. Damage on amplifiers.

•Local heat \rightarrow out-gassing \rightarrow Corona \rightarrow lost of the space mission

•More data or channels \rightarrow more power \rightarrow breakdown •Size reduction. Gaps ! •Conductive materials and "RF friendly" geometries •No possibility to use "heavy" solutions • Astronauts not willing to EVA at 36000 km to find out the reason for the failure and fix it $\rightarrow No$ possibility to correct errors


Content

Multipactor in transmission lines •Multipactor and SEY •Multipactor and other surface properties •Multipactor and internal research at ESA •Simulation and prediction •Future work •Harmonization and standardization

Multipactor in transmission lines

Multipactor: Types of transmission lines

- Waveguide structures - Coaxial lines - Microstrip lines

