Recent Electron-Cloud Mitigation Studies at KEK

E-cloud mitigation mini-workshop on 20-21 November at CERN

Kyo Shibata (for KEKB Group)

Introduction

G KEKB : double ring collider with one collision point

- High Energy Ring (HER) : Electron ring
 - Energy : 8 GeV, Current : ~970 mA, bunch space : 3~6 ns, bunch charge : ~0.9 \times 10⁻⁸ C
- Low Energy Ring (LER) : Positron ring

Energy : 3.5 GeV, Current : ~1600 mA, bunch space : 3~6 ns, bunch charge : ~1.2×10⁻⁸ C

Clearing Electrode 1

3

- Mitigation of E-cloud in Magnets
 - Clearing electrode and electron detector was installed in Wiggler magnet.
 (placed at the center of pole)
 - To ascertain the effect of electrode, the electron density was measured from just under electrode.
 - Tolerance for high beam current was also tested.

Wiggler magnet

Magnetic filed: 0.77 TEffective length: 346 mmAperture (height): 110 mm

Test chamber

Electron detector

E-cloud mitigation mini-workshop on 20-21 November at CERN

Clearing Electrode 2

Cross-section Drawing

- Very thin electrode (0.1 mm, Tungsten) and insulator (0.2 mm, Al₂O₃) were developed.
- Strips measure the horizontal spatial distribution of the e-cloud.

C Top view & side view

Clearing Electrode 4

Results

Drastic decrease in electron density was demonstrated by applying positive voltage.

Groove surface (preliminary)

- Effect of groove surface will be ascertained this autumn. (collaboration with SLAC)
 - Electrode will be replaced by groove surface.
 - Same setup for clearing electrode is utilized.

-106.0

Y. Suetsugu, ILCDR2008

[Groove]

[Monitor]

- **Groove structure was designed and manufactured in SLAC.**
- Second Se

D

RÁI

Beam

Groo

' 38.0^{4.0}

TiN~50 nm

TiN coating 1

- Reduction of SEY of beam duct by coating
 - TiN coating system for long beam ducts was built at KEK.
 - Coating was done by DC magnetron sputtering of titanium in Ar and N₂.
 - Schickness : 200 nm
 - Maximum SEY of TiN film on sample piece was 0.84 (electron dose : 0.001 C/mm²)
 - Several beam ducts have been coated with TiN, and installed in KEKB LER.

TiN coating 2

TiN coating 3

Combination of beam duct with antechambers and TiN coating is a promising candidate for future high current machines.

E-cloud mitigation mini-workshop on 20-21 November at CERN

Graphitization 1

- Electron beam induced graphitization is also studied.
 - Graphitized surfaces have shown low SEY in laboratory experiments.
 - Maximum SEY decreased to 1.0-1.1 (electron irradiated : 0.0016 C/mm²)
 - Setup for graphitization of copper beam duct was newly developed.
 - 500 eV electrons irradiate to duct surface.
 - **C** Emission Current Density : 170μA/cm²

Graphitization 2

- Measurement of electron density in KEKB
 - Graphitization is effective to reduce electron cloud density.
 - Effect is less than TiN and NEG.

- Graphite layer was too thin (FWHM ~10 nm).
- Thicker carbon coating on copper duct is in preparation.

- Measurement of electron density in solenoid coil
 - Only high energy electrons produced near the bunch can enter the groove and reach the detector behind it.
 - With the help of simulation detector current is converted into the density near the beam.

Groove

Inside of the chamber

- Measurement of electron density in Q-magnet
 - Electrons accelerated by a bunch along X-axis reach the detector.
 - Electrons accelerated with small angle to X-axis moves spirally around X-axis losing their energy along X-axis to the spiral motion.
 - Lectrons with sufficient energy and direction close to X-axis reach the detector.
 - Solution: With the help of simulation detector current is converted into the density near the

Detector

• Electron cloud density with quadrupole field (B' = 3.32 T/m)

- 1) COD
- 2) Relative position to the primary synchrotron radiation
- 3) Output offset of amplifier in measurement system.
- Solution The observed value in Q-Magnet is close to the estimation by simulation

- Various studies on the electron cloud mitigation have been done at KEKB positron ring.
 - **Clearing electrode**
 - 💪 Groove surface
 - 🕒 TiN coating
 - Graphitization
 - Beam duct with antechambers
- Mitigation methods, such as clearing electrode and coating gave reasonable effect.
- New RFA type electron detectors was developed and installed in KEKB LER to measure the electron cloud density in solenoid coil and quadrupole magnet.
- Sor SuperKEKB :
 - Drift space : antechamber + solenoid + TiN coating
 - Magnet space : antechamber + TiN coating + clearing electrode? groove surface?