WIMPs, KK axions and DRIFT

Neil Spooner (University of Sheffield)

- Dark Matter
- Directional TPC idea
- DRIFT II
- KK axions and TPC
Direction sensitive WIMP detectors

- **WIMP Wind**
- Galactic WIMP Halo
- June 12:00h
- December 0:00h
- γ
- $v_0=230\text{km/s}$
- $\cos \gamma$
- $WIMP$ astrophysics?
- Determine galactic origin
- Recoil Flux at Boulby @ 0hrs Sidereal
- $WIMP$ recoil
- MC ~30 WIMPs to confirm galactic origin
Determining Halos (galactic co.)

WIMP flux inputs
- assume all S (32GeV) recoils with 100GeV WIMPs.

Standard Maxwellian halo, \(v_0 = 220 \text{km s}^{-1} \).

Triaxial - rather extreme case: \(p = 0.72, q = 0.7 \)

Triaxial halo with \(p = 0.9, q = 0.8 \).

N-body simulations also suggest mild radial orbit bias.
\[
\beta(r) = 1 - \frac{\left\langle v_{\phi}^2 \right\rangle - \left\langle v_{\phi}^2 \right\rangle}{2\left\langle v_r^2 \right\rangle}
\]

Example detector outputs
Low background low pressure TPC

Simulated events
SRIM 40 keV S recoils in 40Torr Cs₂

electron track of similar energy is off scale (sketch)

negative ion drift with CS₂ rediscovered by Jeff Martoff (Temple)
How many WIMPs to see the halo

Model for realistic (advanced) detectors

- 40 Torr CS$_2$
- 1 kV cm$^{-1}$ drift field
- 200 μm resolution
- 10 cm drift
- SRIM2003 - recoil scattering and diffusion

Vectorial Statistics:

Recoil directions estimated as principal axis ±r of moment analysis of pixel signals.

Axial Statistics:

Recoil sense known(unknown): 10-20(100-400) events needed to reject isotropy at 95% confidence in 95% of experiments.

primary limitations: (1) recoil scattering and diffusion
(2) head-tail
DRIFT II (a,b,c,...) - multi-module

first steps to cheap modules

- **Aim**
 WIMP sensitivity of 10^{-6} pb per module per year

- **Basic Design**

 Modular… $n \times (3-4) \times 1m^3$ fiducial vol, NITPCs
 - Back-to-back drift vols & dual MWPC readout
 - Vertical planes, warp adjust strongback MWPCs
 - **3d track reconstruction (anode, grid and z-drift)** (resolution: $\Delta x = 2mm$, $\Delta y = 0.1mm$, $\Delta z = 0.1mm$)
 - Low noise DAQ (few keV S-recoil threshold)
 - low leak vessel design ($<10^{-5}$T.L.s$^{-1}$).
 - Simple gas system (various pressure & gas mixtures)
DRIFT IIa construction

- vacuum vessel
- MWPC, 1m²
- assembly of field cage
- DAQ
DRIFT IIa installation at Boulby (1.1km depth)
DRIFT II shielded and running

Continuous, stable, shielded operation since Aug 17th 05.

- 6 kg.days of unshielded data from engineering runs with ~3 kg.days partially-shielded.
- 12 kg.days of shielded data so far (~80 days continuous operation at 90% live time).
Long-term running and detector stability

- Cathode Current
- CS2 Weight
- Pressure
- Vessel Temperature

Axions, CERN-1105-Niel Spooner
Track analysis

MWPC wire planes

example track (alpha)

\[R^2 = \Delta x^2 + \Delta z^2 \]

\[R^3 = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2} \]

Wire 1

Wire 2

\[\Delta x \]

Wire 3

Wire 4

alpha region

recoil region

γ region

\[\text{NIPs} = 32 \text{ keV S recoil} \]

90%
Gammas rejection basics

- Test with 1 ft³ detector at Occidental

Low threshold

High threshold

Gammas

Neutron

Low thresh. High thresh.

Gamma Region

Neutron Region

Low thresh.

High thresh.

Ionization

Ionization
1000 Wires grouped down to 8 Channels

GRID: 12bit 5MHz sampling PCI ADCs.
Internal 64 fold grouping & Amptek pre-amplification - 8 channels per MWPC
X & Y alpha vetos read into GRID DAQ

ANODE: ditto

Slow Control: 120 chan Agilent data acq unit.
DRIFT IIa underground data

Typical neutron calibration event in right detector:

Background alpha crossing central drift-cathode (parts of track detected by both MWPCs).
DRIFT Ila data analysis

- **Raw data**
- **Analysis software**
- **Waveform statistics**
- **SQL database**
 - 55Fe calibration
 - R2 plots
 - Track finding
 - Cuts

Signal features:
- Minimum value
- Maximum value
- FWHM
- Width (time)
- Width (samples)
- Integrated area
- Timestamp
- Polarity
- Signal profile index
- Event number
- Polarity
- Voltage weighted time
- Minimum value index
- Maximum value index
- Start time/index
- End time/index
- Baseline offset
- Height to width ratio

Graphical representation
- Baseline/zero-line
- Minimum
- Maximum
- Software threshold
- \(\Sigma/N_{ips} \)
Solar Kaluza-Klein axions

- Axions arise from Peccei-Quinn solution to strong CP problem in QCD (see other talks….)

- In theories with n extra dimensions, axions may be able to propagate and acquire so-called Kaluza-Klein excitations

- Such Kaluza-Klein axions produced in the Sun may be trapped into Earth-crossing orbits

- Decay of these trapped Kaluza-Klein axions to pairs of back-back photons may be observable in a suitable detector such as a Time Projection Chamber (TPC) like DRIFT

- Prospects for such a detection are determined by:
 - Axion-photon coupling constant $g_{a\gamma\gamma}$
 - The local axions number density n_0
 - Volume of detector (m^3)
 - Background gammas (1-10 keV)

KK axion lifetime

Axions couple to two photons:

\[g_{a\gamma\gamma} = \frac{\alpha_{EM}}{\pi} \frac{C_a}{f_{PQ}} \]

Axion model factor \(\sim 1 \)

Standard electromagnetic coupling

Symmetry breaking energy scale

This implies decay to two photons with mean lifetime:

\[\tau = \frac{64\pi}{g_{a\gamma\gamma}^2 m_a^3} \]

However, astrophysical constraints imply \(\tau \) too long to observe:

\[10^9 GeV \leq f_{PQ} \leq 10^{12} GeV; 10^{30} \leq t \leq 10^{45} \text{ days} \]

But propagation in extra dimensions allows shorter, observable, lifetime

\[m_a = m_{an} \sim \frac{n}{R} \]
Solar KK axion mass spectrum

Basis for an experimental search:
B. Morgan, N. Spooner et al, D. Hoffmann et al., K. Zioutas...

• Leads to differential decay spectrum:

\[\frac{dR}{dm_a} = \frac{g_{a\gamma\gamma}^2}{64\pi} n_0 m_a^3 f(m_a) \]

\[R = (2.5 \times 10^{11} \text{ m}^{-3} \text{ day}^{-1}) \left(\frac{g_{a\gamma\gamma}}{\text{GeV}^{-1}} \right)^2 \left(\frac{n_0}{\text{m}^{-3}} \right) \]

Typical rate \(\sim 1 \text{ m}^{-3} \text{ day}^{-1} \) (~keV events)

Result for trapped axions in orbits around Sun
(local number density depends on \(g_{a\gamma\gamma} \))

\[g_{a\gamma\gamma} = 9.2 \times 10^{-14} \text{ GeV}^{-1} \quad n_0 = 10^{14} \text{ m}^{-3} \]

Mass spectrum for solar axions trapped in orbits around the sun

Low pressure TPC is ideal

Decay in space so best to have large volume $\sim m^3$

Low pressure allows separation of back to back gammas

1. **Spatial cut**

\[P(s : m_a) = \frac{s}{\lambda^2(m_a/2)} e^{-s/\lambda(m_a/2)} \]

Spatial separation between photoelectrons from axion decay of mass m_a

Photon mean free path in the gas

2. **Energy cut**

\[|E_1 - E_2| > \sqrt{2}\sigma_p(E) \]

Energy resolution

90% at 1.64

3. **Time cut**

\[peak \sim \lambda(m_a/2) \]
Signal and \(\gamma \) background MCs

Signal
- Electron pairs from KK axion decay photons
- Spatial separation cut
- 90% cut (>3.6 MFP)

Background
- \(\Delta z \)
- Electron pairs
- Spatial background cut

\[\Delta T = (|t_1 - t_2|) + \Delta z / N_{\text{diff}} \]
γ background prediction (DRIFT, 160 Torr CS$_2$)

Issues
- Random gamma coincidences
- Coincident backgrounds:
 - Compton scatters
 - ~2 keV S K-shell x-ray

CS$_2$ conclusion
- Good resolution on R (low diffusion)
- Good low gamma sensitivity
- Poor ΔT (gas is slow)
- Poor K - pair background

Nevertheless background rates ~0.1 m$^{-3}$ day$^{-1}$ are possible for m_a of 6-20 keV, several orders of magnitude less than for solid state detectors.
Axions, CERN-1105-Neil Spooner

KK axion limit prediction (preliminary)

BASIC LIMIT - Add Pb shielding until vessel background dominates (10 cm for 1 ppb)

\[g_{a\gamma} \text{GeV}^{-1} \]

\[n_0 \text{ m}^{-3} \]

[1 m^3 yr, CS\textsubscript{2}, 160 Torr, \(m_a = 6-20 \text{ keV} \), 1 ppbU/Th in vessel]

points consistent with solar x-rays from axions (Di Lella et al.)

POSSIBLE IMPROVEMENT (lots of ideas)

- alternative gases to avoid K- events: (a) P10 - but poor R, (b) CF\textsubscript{4} - but longer MFPs…
- larger volumes, higher pressure, purer materials, better analysis
Is DRIFT sensitive enough to the x-rays?

Energy calibration performed using automated Fe55 exposures.

Noise reduction using Fourier transform & box-car smoothing

Individual Fe55 (5.9keV) events on the grid sum
Axions, CERN-1105-Neil Spooner

But, grouped readout limits spatial sensitivity to projection on the xy plane.

e.g. uncut low threshold data (1000 events)

Preliminary calibration data from 55Fe

Few keV gammas

Alphas, sparks..
Conclusion - next steps - DRIFT II b, c..

DRIFT Ila running for WIMPs!

Low energy threshold and spatial resolution may allow identification of back to back gammas from KK axions

Needs upgrade:
 - gamma shielding
 - less channel grouping

Meanwhile DRIFT IIb due for U/G installation Feb 2006:
 - triggerless DAQ
 - lower threshold
 - lower-cost

Bulk micromegas provides route to better PSD...