On Line Silicon Dosimeter for LHC Machine electronics

T. Wijnands, C. Pignard, J-C Michelon, A. Tsoulou, A. Presland

Acknowledgements :

RADWG, RADMON, TIS/RP UCL – CEA/DAM – PSI ESA – JPL– University of Montpellier B. Camanzi – A. Holmes Siedle – A. Rozenveld

Outline

- Motivation
- Functional Requirements
 - Dynamics
 - Accuracy
 - Radiation tolerance read out board
- Dosimeters and remote readout
 - Dose RADFETs
 - Displacement Damage PIN diodes
 - SEU SRAM counter
- Implementation
- Preliminary radiation tests results
- Times Scale & costs
- Conclusions

Motivation

Monitor degradation of electronics due to radiation when beam "on"

- 10.000 electronic crates in ARCs and DS
- 100 racks 750 electronic crates in RRs in Points 1,5,7
- Anticipate replacement of electronics degrading by TID or DD
- Confirm any statistical failures caused by radiation (SEE) not by MTBF
- Focus on radiation damage in silicon (semi conductors)
 - TID : Total Ionising Dose in Si [Gy]
 - **DD**: Fluence of 1 MeV eq. neutrons [cm⁻²]
 - SEE : Fluence of hadrons E > 20 MeV [cm⁻²]
- Confirm FLUKA/MARS/GEANT4 predictions of radiation levels
- Confirm shielding efficiency confirm staged implementation
- Complementary to BLM data to understand LHC operation

Requirements

Accurate monitoring of a mixed radiation field during operation :

- Inaccuracy : **TID** : 10 % **DD** : 20 % **SEE** : 10 %
- Dynamics : **TID** : 0.1 Gy/s **DD** : 1E6 cm⁻² s⁻¹ **SEE** : 1E8 cm⁻² s⁻¹
- Tolerance monitor board : TID : 200 Gy DD : 1E12 cm⁻² SEE : none

• Flexible and scalable :

- Number of monitors should vary according to needs
- Monitors have to be placed next to any tunnel electronics

(on the cable trays and under cryostats main magnets)

- Radiation Monitoring of UAs, UJs, bottom of the pits, US45, RRs ...

On line data via "standard" CERN controls infrastructure

- WorldFIP fieldbus network at 33 kbps in tunnel
- Gateways with Ethernet in surface buildings (SRs)

Total Dose Dosimeter

Basic principle

MOS transistor

- Amplify signals
- Logic
- ...

Characteristics under radiation

- Conductivity decreased
 - Creation of electron-holes
 - Positive charge trapped
- Conductivity change is <u>proportional</u> to
 - the Total Ionising Dose
 - Information stored in gate oxide
 - Read information via Electrical measurement

Thomson & Nielsen RADFET

Advantages

- Widely used
- Precise calibration curve for ⁶⁰Co: 10 Gy give ∆V = 0.9 V
- Various gate oxide thicknesses
 - TN100P (oxide 0.10 um)
 - TN250P (oxide 0.25 um)
 - TN502P (oxide 0.50 um)

To be determined

- Optimised readout protocol
- Selection of correct gate oxide thickness
- Annealing behaviour

T&N RADFET 0.25 um

Displacement Damage Dosimeter

Basic principle

PIN (p+/n/n+) diode

- variable resistor at RF frequencies
- resistance is determined by a forward current of I = 1-100 mA

Characteristics under radiation

- Conductivity reduced
 - Decreasing minority carrier concentration
 - Decreasing minority carrier life time
- Conductivity change <u>linear dependent</u> on 1 MeV equivalent neutron fluence

SIEMENS PIN photo diode

Advantages

- Widely used
- tested in '93 by TIS/RP
- Cheap and easy to use
- Linear response

To be determined

- Optimised readout protocol
- Increasing sensitivity at low fluences
- Annealing behaviour

SIEMENS BPW34

Single Event Dosimeter

Basic principle

SRAM memory

- CMOS 6 Transistor SRAM cell
- P and N type
- Storage of logic data

Characteristics under radiation

- Logical transitions
 - Creation of electron-holes
 - Fast charge collection current spike
- Nbr of transitions <u>proportional</u> to the hadron fluence E > 1 MeV
 - Information stored in memory
 - Very fast read out possible

Toshiba SRAM

Advantages

- Commercially available
- No latch up observed (5 Volts, 0.4 um)
- Total Dose effects small

TOSHIBA TC554001AF-70L

L. Scheick, G. Swift, NSREC Monterrey 2002

Prototype Radiation Monitoring board

WorldFIP

Radiation Monitoring board schematics

Single Event Test (1)

60 MeV proton beam at PSI

- Irradiation of SRAM only
- Check Dynamics :
 - Flux : 1 5 x 10⁸ protons cm⁻² s⁻¹
 - Fluence constant : 1 x 10¹⁰ protons cm⁻²
- Check Total Dose dependence
 - Total dose : 0 -70 Gy
 - Fluence constant : 1 x 10¹⁰ protons cm⁻²

Neutron Radiation Test (1)

0.8 MeV neutrons at PROSPERO

- Irradiation of <u>entire</u> card
- On reactor <u>core</u> : 0.8 MeV neutrons
- Max 1 % error on dosimetry

Neutron Radiation Test (2)

- Readout current 1 mA for PIN & 100 μA RADFET
- Radiation parameters (reactor at 3 KW)
 - Flux : 2.9 x 10¹⁰ neutrons cm⁻² s⁻¹
 - Fluence : 6 x 10¹² protons cm⁻²
- PIN diode : V_F=1 Volt -> 6.6E12 neutrons/cm2
- RADFET (0.1 um) : V_{sc} = 0.1 Volt Gy ->1.2 Gy [Si]
 - VERY GOOD agreement with manufacturer data : 0.1 Volt ->1 Gy !!!)

Proposed layout for the LHC

Timescale & Cost estimate

- WorldFIP fieldbus installation
 - 200 connections
 - 20 km cable in tunnel
 - Fibre connection to surface buildings

130 kCHF

- Dosimeters and remote readout
 - 100 readout boards
 - 100 dosimeter cards

80 kCHF

- WorldFIP cabling
 - Point 7-8 during local cabling campaign (before 1 March 2004)
 - Other points during signal cabling campaigns
- Operational in sector 7-8 before sector test in 2006

Conclusions

- Silicon dosimeters will be very usefull
 - Diagnostic tool
 - Shielding
 - Operations
- Dosimeters and remote readout have been identified
 - Dose RADFETs (Thomson and Nielsen)
 - Displacement Damage PIN diodes (SIEMENS)
 - SEU SRAM counter (Toshiba SRAM)
- System can be operation before sector test in 2006
- Future work
 - Complete the calibration work (read out protocol)
 - Data on annealing (in collaboration with CMS)
 - Final prototype for use in tunnel to be tested in TCC2 next year
 - ADC based
 - On board power supply