## Radiation Hardness for LHC Experiments



- Radiation qualification of electronics in LHC experiments
  - Experiments data & some results
  - RadTol regulator, Thermal neutrons ...



RADWG Workshop F. Anghinolfi EP/MIC Radiation qualification of electronics in LHC experiments

LHC experiments have to deal with electronics radiation damage :

|                           |       | Most<br>exposed | Cavern<br>Walls |
|---------------------------|-------|-----------------|-----------------|
| TID (Gy)                  | Alice | 2500            | 0               |
|                           | Atlas | 260K            | 1-2             |
|                           | CMS   | 828K            | 2               |
|                           | LHCb  | 70K             | 2               |
| NIEL                      | Alice | 3.0E+12         | 6.5E+6          |
| $(1 \text{ MeV } n/cm^2)$ | Atlas | 1.6E+15         | 5.0E+10         |
|                           | CMS   | 2.5E+15         | 5.1E+10         |
|                           | LHCb  | 9.0E+13         | 1.5E+11         |

10 years @ full luminosity

Radiation qualification of electronics in LHC experiments

### LHC experiments have to deal with Transient Errors

|                   |       | Most<br>exposed | Walls    |
|-------------------|-------|-----------------|----------|
| Hadrons           | Alice | 1.3E+12         | 8.7E+6   |
| $(> 20 MeV/cm^2)$ | Atlas | 2.3E+15         | 1.0E+10  |
|                   | CMS   | 2.5E+15         | 1.8E+10  |
|                   | LHCb  | 1.4E+14         | < 4.3E+9 |

10 years @ full luminosity

#### Typical bit flip SEU cross section : 10<sup>-14</sup>cm<sup>2</sup>/bit

### Radiation qualification of electronics in LHC experiments

### Qualification tests

| Radiation Damage              | SEU               |  |
|-------------------------------|-------------------|--|
|                               |                   |  |
|                               |                   |  |
|                               |                   |  |
| Component Selection           | Error protections |  |
| Component Production (ASICS & | Error rates       |  |
| COTS)                         | Error recovery    |  |
| Board Production              |                   |  |
|                               |                   |  |

## **Radiation Hardness & Technologies**



| Radiation Hardened by design, Commercial t | technology (Ex: 0.25 |
|--------------------------------------------|----------------------|
| microns with radtol layout techniques)     |                      |

**ASIC : Commercial technology, can be SEU hardened by design** Commercial **COTS : Commercial components, FPGAs can be SEU hardened by design** ASIC, COTS

## **SEU Issues**

All electronics is subject to SEU, with different probability depending on technology, architecture.

The probability of SEU event is part of the components reviews The probability of SEU on system/DAQ is part of the system reviews

All systems are checked for modes of restoration/recovery after critical SEU event

ASICs, FPGAs are designed with SEU recovery techniques :

- Error detection
- CRC
- Triple vote logic

Redundancy at subdetector system level

## **DETECTORS OVERVIEW**

## ALICE



## ALICE



## ALICE : Fluences and doses for 10 years

| Detector | Dose                    | 1mevneq                 | n                      | $p,\pi$                |
|----------|-------------------------|-------------------------|------------------------|------------------------|
| SPD1     | $2.50\!\times\!10^3$    | $2.95\!\times\!10^{12}$ | $3.13 	imes 10^{11}$   | $1.30\!\times 10^{12}$ |
| SPD2     | $6.94\!\times\!10^2$    | $1.72\!\times\!10^{12}$ | $1.27\!\times 10^{11}$ | $7.61\!\times10^{11}$  |
| SDD1     | $2.41\!\times\!10^2$    | $9.87\!\times\!10^{11}$ | $4.28\!\times10^{10}$  | $4.31\!\times10^{11}$  |
| SDD2     | $1.96\!\times\!10^2$    | $7.39\!\times\!10^{11}$ | $1.64\!\times 10^{10}$ | $6.88\!\times10^{11}$  |
| SSD1     | $5.56 	imes 10^1$       | $6.24\!\times\!10^{11}$ | $1.39{\times}10^{10}$  | $4.23\!\times10^{11}$  |
| SSD2     | $4.32\!\times\!10^1$    | $5.42\!\times\!10^{11}$ | $1.56\!\times 10^{10}$ | $2.25\!\times 10^{11}$ |
| TPCin    | $6.50\!\times 10^{0}$   | $6.00\!\times\!10^{11}$ | $1.05\!\times 10^{10}$ | $2.13{\times}10^{11}$  |
| TPCout   | $5.32\!\times\!10^{-1}$ | $5.20\!\times\!10^{10}$ | $3.45\!\times 10^9$    | $1.44 	imes 10^{10}$   |
| TRD      | $4.44 \times 10^{-1}$   | $3.42\!\times\!10^{10}$ | $3.56 	imes 10^9$      | $2.70\!\times10^{10}$  |
| TOF      | $2.92\!\times\!10^{-1}$ | $1.12\!\times\!10^{10}$ | $1.79 	imes 10^9$      | $9.11 \times 10^9$     |
| HMPID    | $1.90\!\times 10^0$     | $4.21\!\times\!10^{10}$ | $5.19{\times}10^8$     | $3.90\!\times 10^9$    |
| PHOS     | $1.60\!\times\!10^{-1}$ | $1.77\!\times\!10^{10}$ | $6.50\!\times 10^8$    | $1.17{\times}10^9$     |

tracker

B. Pastircak

## ALICE

Central Tracker : all electronics in RadTol 0.25 microns, tested up to 5000 Gy

TPC and above : all electronics (COTS, ASICs with no radtol layout) tested to 20-70 times the simulation level (~6Gy worst case in TPC)

Walls : No radiation requirements

## Alice TPC readout



| Name            | Туре               | No. Parts | Max. Dose (krad) | Test Method |
|-----------------|--------------------|-----------|------------------|-------------|
| ALTRO-16        | CMOS               | 4         | 312              | dynamic     |
| PASA            | CMOS               | 4         | 96               | static      |
| MIC39151 🕆      | Bipolar            | 2         | 29.6             | dynamic     |
| TC1265          | CMOS               | 2         | 84               | dynamic     |
| GTL16612        | Bi-CMOS            | 1         | 48               | dynamic     |
| MPC9109         | CMOS               | 1         | 52               | static      |
| AD8604          | CMOS               | 1         | 22               | static      |
| LM4120          | Bipolar            | 1         | 22               | static      |
| EPC1441 🕆       | CMOS               | 2         | 4.2              | unpowered   |
| Part malfunctio | on at mentioned do | ose       |                  |             |

## Alice TPC readout

- TC1265 stood 84 krad without problem
- MIC39151 died after 25 krad (switch-off still possible)
- MIC39151 showed 4-5 spikes at the beginning of the irradiation (50-100 mV)





## ATLAS

| Regions                | Neutron fluence<br>[Particles/cm <sup>3</sup> ] | Proton fluence<br>[Particles/cm <sup>3</sup> ] | Dose [Gy] |
|------------------------|-------------------------------------------------|------------------------------------------------|-----------|
| Inner Tracker<br>Pixel | 1.6E+15                                         | 2.3E+15                                        | 288 000   |
| Inner Tracker<br>TRT   | 7.2E+13                                         | 2.8E+13                                        | 16 000    |
| Larg Cal               | 1.9E+12                                         | 3.8E+11                                        | 48        |
| Tile Cal               | 2.7E+11                                         | 6.7E+10                                        | 3.8       |
| Walls                  | 4.9E+10                                         | 1.0E+10                                        | 1         |

## ATLAS

Central Tracker : Electronics in RadTol 0.25 microns (pixel, TRT), RadHard DMILL (SCT, TRT), Commercial Bipolar, tested to 1-5 times simulation level

Calorimeter and above : RadHard & RadTol ASICS, COTS tested to 3.5-70 times the simulation level (~230 Gy worst case in forward CSC)

Walls : Patch Panels, Power Supplies with selected COTS tested to 70 times the simulation level (1-2 Gy)

|                 |      | Pı                 | esele | ection | Pr    | od. ( | Qual.   |       |                   |
|-----------------|------|--------------------|-------|--------|-------|-------|---------|-------|-------------------|
| Part            | List | SelG               | Seln  | SelSEE | ProdG | Prodn | ProdSEE | Comps | Comments          |
| FE              | Y    | 17/18              | 17/18 | 17/18  | 15/18 | 15/18 | 15/18   | 18    | Miss LV-, opto    |
| Controller      | Y    | 3/11               | 3/11  | 3/11   | 3/11  | 3/11  | 3/11    | 11    | LV+, TTC,<br>SPAC |
| Tower Builder   | Y    | <mark>10/10</mark> | 10/10 | 10/10  | 9/10  | 9/10  | 9/10    | 10    | Miss LV-          |
| Layer Sum       | Y    | 1/1                | 1/1   | 1/1    | 1/1   | 1/1   | 1/1     | 1     |                   |
| PreAmpli        | Y    | 1/1                | 1/1   | 1/1    | 1/1   | 1/1   | 1/1     | 1     | Prod. Done        |
| PreShaper       | Y    | 1/1                | 1/1   | 1/1    | 1/1   | 1/1   | 1/1     | 1     | Prod. Done        |
| Digital Calib   | Y    | 5/5                | 5/5   | 5/5    | 4/5   | 4/5   | 4/5     | 5     | Miss PHOS         |
| Anal. Calib     | Y    | 6/6                | 6/6   | 6/6    | 5/6   | 5/6   | 5/6     | 6     | Miss LV-          |
| Tower Driver    | ?    |                    |       |        |       |       |         |       |                   |
| LV PS           | Y    | Y                  | Y     | Y      | N     | N     | N       |       | Preserie 2003     |
| LV distri Board | Y    | 3/3                | 3/3   | 3/3    | 2/3   | 2/3   | 2/3     | 3     | Miss LV-          |
| Optical Link    | Y    | 7/7                | 7/7   | 7/7    | 1/7   | 1/7   | 1/7     | 7     |                   |
|                 |      |                    |       |        |       |       |         |       | Prod. tests en    |
| ELMB            | Y    | Y                  | Y     | Y      | N     | N     | N       | 1     | cours             |
| Purity Readout  | Y    | 2/2                | 2/2   | 2/2    | 2/2   | 2/2   | 2/2     | 2     | LV, HFA1135       |
| Temp Readout    | Y    | Y                  | Y     | Y      | Y     | Y     | Y       |       | Only Passive      |
| FEC V&T         | Y    | Y                  | Y     | Y      | Y     | Y     | Y       |       | Only Passive      |
| HEC LV distri   | Υ    | Y                  | Y     | Y      | Υ     | Y     | Y       |       | Only Passive      |

• LArg



QUAL LARG except PS



Qualification Status Sept'03

# Power Supplies in UX15

Specific Issues

- . Specific technology of power devices
- . Opto couplers
- . Condition under SEU\* event

In next slides "SEU" are events which create a fonctionnal failure and/or dead time

## ATLAS Electronics Radiation Hardness Power Supplies in UX15

| Location/Detector | Features | Controller | Status       | Power Device Qual    | Preselection<br>Radiation<br>Qualification | Production<br>Radiation<br>Qualification |
|-------------------|----------|------------|--------------|----------------------|--------------------------------------------|------------------------------------------|
|                   |          |            |              |                      |                                            |                                          |
| LARG PS           | R=4m     | ELMB       | PRR Nov 2003 | Yes, Production done | Yes                                        | No                                       |
| LARG HEC          | R=4m     | ELMB       | FDR TBD      | ST LV+ LV-           | No                                         | No                                       |
|                   |          |            |              |                      |                                            |                                          |
| Tile HV           | R=4m     | On Board   | PRR Done     | Yes                  | Yes                                        | Yes                                      |
| Tile LV "Brick"   | R=4m     | ELMB       | FDR June 03  | Still to be fixed    | No                                         | No                                       |
|                   |          |            |              |                      |                                            |                                          |

ELMB : 2 SEU/10years in LARG PS position

On Board Tile HV logic : 5 SEU/year

## ATLAS Electronics Radiation Hardness Power Supplies in UX15

|                   |          |               |                |                   | Preselection<br>Radiation | Production<br>Radiation |
|-------------------|----------|---------------|----------------|-------------------|---------------------------|-------------------------|
| Location/Detector | Features | Controller    | Status         | Power Device Qual | Qualification             | Qualification           |
| MDT Muon HV       | R=6m     | One per crate | CAEN           | Yes               | Yes                       | No                      |
| MDT Muon LV       | R=11m    |               | CAEN or WIENER |                   |                           |                         |
|                   |          |               |                |                   |                           |                         |
| TGC Muon HV       | R=11m    |               | CAEN           | Yes               | Yes                       | No                      |
| TGC Muon LV       | R=11m    |               | CAEN or WIENER | Yes               |                           |                         |
|                   |          |               |                |                   |                           |                         |
| CSC Muon HV       | R=11m    |               | CAEN           | Yes               | Yes                       | No                      |
| CSC Muon LV       | R=11m    |               | CAEN or WIENER | Yes               |                           |                         |
|                   |          |               |                |                   |                           |                         |
| RPC Muon HV       | R=11m    |               | CAEN           | Yes               | Yes                       | No                      |
| RPC Muon LV       | R=11m    |               | CAEN or WIENER | Yes               |                           |                         |
|                   |          |               |                |                   |                           |                         |
| TRT               | R=11m    | no controller | WIENER PL500   | Yes               | No                        | No                      |

CAEN Controller : <1 SEU/controller/year

No local Controller on WIENER units

### CMS



## CMS

| Regions       | Neutron fluence<br>[Particles/cm <sup>3</sup> ] | Proton fluence<br>[Particles/cm <sup>3</sup> ] | Dose [Gy] |
|---------------|-------------------------------------------------|------------------------------------------------|-----------|
| Inner Tracker | 2.5E+15                                         | 2.5E+15                                        | 828 000   |
| ECAL          | 8.0E+13                                         | -                                              | -         |
| HCAL          | 1.7E+12                                         | 4.8E+11                                        | 83        |
| MUON          | 8.2E+11                                         | 2.2E+10                                        | 29        |
| Walls         | 5.1E+10                                         | 1.8E+10                                        | 1-2       |

M. Huhtinen

### CMS

### Tracker & ECAL: Electronics in RadTol 0.25 microns

HCAL : 0.35 microns BiCMOS

Muon Chambers : 0.8 microns BiCMOS

Off-Detector : Crates, Power Supplies with selected COTS tested to ~10 times the simulation level (10 Gy)

### CAEN SASY Power Supply irradiation test with fast Neutrons at UCL

### Up to 2E+12 MeV neutrons



Passuello, Periale, for CMS

### CAEN SASY Power Supply irradiation test with fast Neutrons at UCL



reset (OFF/ON sequence) from remote. The channels restart all normally.

### CAEN SASY HV Power Supply irradiation test with 60MeV protons at UCL

- Average 4 SEU per DC/DC coupler per 1.0E+11 protons are observed (0.5 SEU/year in LHC conditions)

-Careful selection of opto couplers parts

-Tested up to 140 Gy

## LHCb Detector



## LHCb

| Regions                 | Neutron fluence<br>[Particles/cm <sup>3</sup> ] | Proton fluence<br>[Particles/cm <sup>3</sup> ] | Dose [Gy] |
|-------------------------|-------------------------------------------------|------------------------------------------------|-----------|
| Vertex Tracker<br>Pixel | 9.0E+13                                         | 1.4E+14                                        | 58 000    |
| Inner Tracker           | 8.7E+13                                         | 1.3E+14                                        | 70 000    |
| RICH                    | 3.4E+12                                         | 3.1E+11                                        | 240       |
| Muons                   | 2.2E+13                                         | 1.1E+13                                        | 4620      |
| Walls                   | 1.5E+11                                         | 4.6E+9                                         | 1-2       |

J. Christiansen

## LHCb

Central Vertex : Electronics in RadTol 0.25 microns

RICH & Inner Tracker : Electronics in RadTol 0.25 microns

Outer Gas Tracker : RadHard DMILL

ECAL & HCAL : ASICs with commercial 0.8µm CMOS. All tested to radiation level and SEU. AntiFuse FPGA.

Muon Chambers : All Electronics in RadTol 0.25 microns

Off-Detector : Some crates are exposed up to > 100 Gy and  $2^{12}$  protons/cm<sup>2</sup>

## Xilinx FPGA SEE test



#### Xilinx XC4036XL SEE test

N.J. Buchanan, Alberta

## Xilinx FPGA TID test

### 3.3V 0.35µm CMOS



Xilinx XC4036XL TID test

N.J. Buchanan, Alberta

## Antifuse-based FPGA SEE test

### 0.15µm AX1000 Antifuse-based FPGA



R. Katz, Nasa

## Antifuse-based FPGA SEE test

### 0.15µm AX1000 Antifuse-based FPGA



Embedded SRAM (165888 bits)

R. Katz, Nasa

## Status

• Experiments are conducting damage tests with safety factors from 10 to 100 (COTS)

• SEU protection is handled at design level

• SEU rates are estimated to evaluate dead time

Positive LV4913 is fully qualified and available at CERN store (TID > 2Mrads, NIEL ~ 1E14 1MeV neutrons)

Negative LV7913-JQ6 prototypes recently received

# LV7913-JQ6 protons test



# LV7913-JQ6 protons test



# LV7913-JQ6 neutrons test

#### TRIGA reactor, Ljubljana



B. Kieselewski

# LV7913-JQ6 status

#### **3 OPTIONS (T1-T2-T3) have been tested**

**Version T2 has been rejected because of poorer radiation hardness** 

**Production will follow decision after reliability tests on T1, T3 is done by ST.** 

Thermal neutrons

Specific Issue

Thermal neutrons (<1eV) may affect the beta of bipolar transistors (usually PNP)

Mechanism is thermal neutron capture by Boron, with very large cross section.  $\alpha$  particle is emitted and creates NIEL damage in the base of bipolar

The DMILL bipolar transistor was found to be sensitive to thermal neutrons (although it is NPN)

## Database

Radiation Tolerant Components Database update (C. Parkman) :

- For all CERN experiment&accelerator electronics
  - used for LHC electronics components,
  - Open to Alice, CMS, LHCb ...
- Addition of Systems and Sensors

Consult Web Page http://oraweb01.cern.ch/radhardcomps/owa/radhardcomps\_public.

## Irradiation Campaigns

TID Campaign in Pagure : April 2003 NIEL Campaign in Prospero : April 2003, Nov 2003 NIEL Campaign in ITN : Jan-March 2003 Hadron Campaigns (PSI, Louvain) organized jointly by F. Faccio (EP) and T. Wijnands (AB) March 03 April 03 June 03 Sep 03 Nov 03

Consult Web Page http://oraweb01.cern.ch/atlasradag/owa/Q\_CERN\_AGENDA.queryList