

Radiation Monitoring for CMS **F.Ravotti** (EST-LEA-CMS) **M.Glaser** (EP-TA1-SD)

- Monitoring System for CMS ?
- CMS Radiation Environment
- Active Monitors for CMS
 - RadFETs
 - > OSL
 - p-i-n diodes
- Conclusions
- Future work

Monitoring System for CMS ... why ?

- Radiation = danger for all systems.
- To establish relationship between the measurements close to the beampipe (Beam Condition Monitor) and radiation levels throughout CMS.
- > To check the integrity of shielding and accuracy of simulations.
- Long term monitoring of radiation exposure and background together with TIS ionization chambers.

Basically small and cheap <u>Active Monitors</u> able to measure <u>Dose</u> (ionization) and particle <u>Fluence</u> (displacement damage)

F.Ravotti

CMS Radiation Environment

- → Mixed radiation environment dominated by neutrons.
- \rightarrow Different for each sub detector f(r).
- → Different requirements in terms of Sensitivity and Dynamic range:

1-1000 mGy/h

2 – 2000 Gy

ECAL

100 Gy –100 kGy

1x10¹⁴ part / cm²

F.Ravotti

Joint RADWG and RADMON Working Group Day – December 4th, 2003

< 1 mGy/h

Active Monitors under development for CMS RadFETs

Build-up of charge in MOS SiO_2 (Dose) \rightarrow Increase of the MOS gate voltage (threshold) when biased with fixed drain current (integrating measurement).

Optically Stimulated Luminescence (OSL)

F.Ravotti

Bulk damage in high ρ Si-base

(displacement damage) →Increase of base resistance when biased forward with low constant current (integrating measurement).

Charge trapped in sensitive material (Dose) \rightarrow Charge detrapped by IR stimulation with subsequent emission of visible light proportional to the absorbed dose (after each reading the material is completely "reset").

RadFETs – General

Previous work (Camanzi, Ravotti, Glaser)

- 1. Characterized in different radiation environments.
- 2. Different SiO_2 thickness = different sensitivities.
- 3. Sensitivity decreases over the integration.
- 4. They can integrate doses in the 10 Gy 100 kGy range.

... from this year

- New thick devices (CNRS, Toulouse) tested in proton (see after) and mixed-neutron environment (analysis still ongoing).
- 6. Annealing of the trapped charge is the "enemy" of the devices over their lifetime: we are worried about device long-term behaviour !

 \rightarrow Isochronal annealing program

RadFETs – New devices

- 1. Charge build-up is dose-rate independent.
- "Radiation dependent" response: the response with photons is 64% higher than the protons one:
 - Higher h/e pair recombination for protons.
- \rightarrow calibration environment has to be carefully

chosen, ex:

CMS like spectrum of the CERN PS-T8 IRRAD2 facility.

 \rightarrow Important in a mixed environment to monitor

different quantities!

Example of response curves for thick CNRS devices in 24 GeV/c proton beam

F.Ravotti

RadFETs – Isochronal Annealing 1/2

During lifetime of the devices: 3 Trapped charge annealing (prompt time scale). ∆V_{ds} (Volt) 2 Delayed generation of interface states due Device to irradiation can occur (years time scale). measured **HIGH** in CERN-**MISINTERPRETATION OF REAL** LOW FLUX TCC2 FIUX **RADIATION FIELD CONDITIONS** 0 0.00 0.95 1.31 1.45 1.59 $x 10^{13} (n/cm^2)$

We have to predict the RadFETs long time behaviour to be sure about the values we will

measure over the time! (e.g. the trapped charge spectrum into SiO_2).

Prediction based on the scaling annealing time \Leftrightarrow annealing temperature

F.Ravotti

RadFETs – Isochronal Annealing 2/2

1. Irradiation to $Dose_{max} < SiO_2$ saturation 2. Define the "mission" of the dosimeter:

(1 y. and 10 y. @ 30°C)

- 3. Calculate the characteristic T*.
- 4. Perform the heating program:

5. Interpretation of the curves:

Unannealed charge vs. Temperature.

Example of Isochronal annealing

(after 20 Gy of proton irradiation)

F.Ravotti

Optically Stimulated Luminescence

(collaboration between CERN and CEM² – Montpellier)

The behavior of the SiO₂ in a mixed radiation environment and the loss of sensitivity during time, suggests to have a complementary way to measure the ionization (Dose).

A sensor based on these materials (developed for space/medical applications) already exist.

F.Ravotti

OSL @ CERN

We began the study of this new dosimetric technology following 3 different ways:

Sensitivity of the standard OSL material "strontium-sulfide doped" (SrS)

to High Energy Particles

Pa Development of SrS-based compounds with calibrated neutron sensitivity

Test of the integrated sensor in High Energy

Particles environment.

Designed for the range (50 mGy – 100 Gy)

OSL DAQ LabVIEW controlled

F.Ravotti

OSL @ CERN – Sensitivity to HEP

- Tested samples 5x5 mm² of SrS deposed on Kapton Foils.
- Several Irradiations with different beam conditions performed at the CERN PS proton IRRAD1 facility;
- 3. Dynamic range up to 100 Gy
- 4. Material handling quite difficult due to products light sensitivity.
- Charge annealing and temperature influence on trapping process have to be studied in details.

SrS response to 24 GeV/c proton beam (IRRAD1 facility)

F.Ravotti

OSL @ CERN – neutron sensitive materials

1. Tested samples 5x5 mm² of different mixtures

of SrS + Polyethylene (PE)/Boron(B).

- 2. Pure SrS almost insensitive to neutrons.
- 3. Sensitivity SrS+PE ~ 20 Sensitivity SrS.
- 4. SrS + B homogeneity ?, strong annealing ?
- 5. SrS + PE + B no signal! (problem during materials preparation).

New neutron irradiation is under way at JSI TRIGA reactor in Ljubljana.

responses into IRRAD2 environment

F.Ravotti

13

OSL @ CERN – Integrated Sensor

Sensitive material +

(SrS block sandwiched between diode and photodiode)

Radhard electronics =

(degradation of IR LED emission compensated)

RADHARD INTEGRATED SENSOR

F.Ravotti

BPW34F p-i-n diodes - General

Other p-i-n diodes tested in the past (University of Wollongong, Australia)

base width = 1.2 mm and ρ = 1.7 k\Omega {\cdot} cm

 \rightarrow very high sensitivity for fluences < 10¹² part./cm²

To cover high fluences we try to investigate a new types of diodes \rightarrow OSRAM BPW34F

base width = 210 μ m and ρ = 2.5 k Ω ·cm

- Devices not designed for dosimetric purposes.
- Some investigations already done also here at CERN/TIS in the past.

We are studying proton/neutron irradiated diodes comparing "on-line" and "off-line" measurement in collaboration with the CERN EP-TA1-SD group.

F.Ravotti

BPW34F p-i-n diodes – 1/2

F.Ravotti

BPW34F p-i-n diodes – 2/2

Protons data $\rightarrow \Phi_{n1MeVeq} = \Phi_p \times k$.

Neutrons data $\rightarrow \Phi_{n1MeVeq}$ from FLUKA simulation normalized with Si-detectors fluence measurement.

- \rightarrow NIEL scaling is respected.
- → Sensitivity of 1.1 V/ 10^{13} n_{1MeVeq} / cm².
- \rightarrow Results coherent with previous test.
- \rightarrow Irradiations with:

lower fluence (< 4x10¹² part/cm²). higher fluence (~ 10¹⁶ part/cm²). already performed: analysis still ongoing!

BPW34F data's (IRRAD1 / IRRAD2 CERN facilities) normalized to 1MeV_{eq} neutrons

F.Ravotti

Conclusions

RadFETs dosimeters:

- New devices can help to fit better CMS requirements.
- <u>We need</u> to perform isochronal measurements to finish the characterization of this technology.

OSLs dosimeters:

- We proved that SrS materials work in HEP environment;
 - \rightarrow Accurate annealing studies has to be done.
- Encouraging results in the development of neutron sensitive materials;
 → Work on the materials has to be continued.

BPW34F p-i-n diodes:

- We found a device to measure high particle fluences.
- Annealing and temperature effects have to be fully investigated.

- 1. We need different technologies to monitor a mixed radiation environment with Si-based devices.
- 2. All devices under test have small dimensions.
- 3. Basically we inject a current to read voltages as dosimetric parameters.

 \rightarrow To integrate all these technologies in one PCB !

F.Ravotti

Acknowledgments

- EP Irradiation team for the use of their facilities on PS complex (<u>http://www.cern.ch/irradiation</u>).
- EP-TA1-SD section for their support.
- CEM² Montpellier University for the support on OSL materials.
- CNRS-LAAS of Toulouse for the support on new RadFETs devices.

RadFETs calibration → PS IRRAD2 Facility

Shuttle system to place the samples at different distances (z) from target

- Deposed dose known by FLUKA simulations (M.Huhtinen).
- Optimization of the calibration for the different CMS sub-detectors.

After Maurice Glaser

F.Ravotti