

Radiation Monitoring for CMS F.Ravotti (EST-LEA-CMS) M.Glaser (EP-TA1-SD)

- Monitoring System for CMS ?
- CMS Radiation Environment
- Active Monitors for CMS
	- ¾RadFETs
	- \blacktriangleright OSL
	- ¾p-i-n diodes
- Conclusions
- Future work

Monitoring System for CMS … why ?

- \triangleright Radiation = danger for all systems.
- \triangleright To establish relationship between the measurements close to the beampipe (Beam Condition Monitor) and radiation levels throughout CMS.
- \triangleright To check the integrity of shielding and accuracy of simulations.
- ¾ Long term monitoring of radiation exposure and background together with TIS ionization chambers.

Basically small and cheap Active Monitors able to measure **Dose** (ionization) and particle **Fluence** (displacement damage)

CMS Radiation Environment

- \rightarrow Mixed radiation environment dominated by neutrons.
- → Different for each sub detector *f* (*r*).
- \rightarrow Different requirements in terms of Sensitivity and Dynamic range:

1-1000 mGy/h

 $2 - 2000$ Gy

ECAL

100 Gy –100 kGy

1x10¹⁴ part / cm²

F.Ravotti Joint RADWG and RADMON Working Group Day – December 4th, 2003

< 1 mGy/h

Active Monitors under development for CMS RadFETs

Build-up of charge in MOS SiO $_2$ (Dose) \rightarrow Increase of the MOS gate voltage (threshold) when biased with fixed drain current (integrating measurement).

Optically Stimulated Luminescence (OSL)

Bulk damage in high ρ Si-base

(displacement damage) → Increase of base resistance when biased forward with low constant current (integrating measurement).

Charge trapped in sensitive material (Dose) → Charge detrapped by IR stimulation with subsequent emission of visible light proportional to the absorbed dose (after each reading the material is completely "reset").

RadFETs – General

Previous work (Camanzi, Ravotti, Glaser) ……

- 1. Characterized in different radiation environments.
- 2. Different SiO $_2$ thickness = different sensitivities.
- 3. Sensitivity decreases over the integration.
- 4. They can integrate doses in the 10 Gy 100 kGy range.

… from this year ……

- 5. New thick devices (CNRS, Toulouse) tested in proton (see after) and mixed-neutron environment (analysis still ongoing).
- 6. Annealing of the trapped charge is the "enemy" of the devices over their lifetime: we are worried about device long-term behaviour !

 \rightarrow Isochronal annealing program

RadFETs – New devices

- 1. Charge build-up is dose-rate independent.
- 2. "Radiation dependent" response: the response with photons is 64% higher than the protons one:
	- **Higher h/e pair recombination for** protons.
- \rightarrow calibration environment has to be carefully

chosen, ex:

CMS like spectrum of the CERN PS-T8 IRRAD2 facility.

 \rightarrow Important in a mixed environment to monitor

different quantities! *Example of response curves for thick CNRS devices in 24 GeV/c proton beam*

RadFETs – Isochronal Annealing 1/2

During lifetime of the devices: 3 • Trapped charge annealing (prompt time scale). ΔV_{ds} (Volt) $\overline{2}$ • Delayed generation of interface states due *Device* to irradiation can occur (years time scale). *measured* HIGH *in CERN-*MISINTERPRETATION OF REAL LOW FLUX**FLUX** *TCC2* RADIATION FIELD CONDITIONS Ω 0.00 0.95 1.31 1.45 1.59 $x 10^{13}$ (n/cm²) We have to predict the RadFETs long time behaviour to be sure about the values we will

measure over the time! (e.g. the trapped charge spectrum into SiO₂).

Prediction based on the scaling annealing time \Leftrightarrow annealing temperature

RadFETs – Isochronal Annealing 2/2

1. Irradiation to Dose $_{\sf max}$ < SiO $_2$ saturation 2.Define the "mission" of the dosimeter:

(1 y. and 10 y. @ 30ºC)

- 3.Calculate the characteristic T*.
- 4.Perform the heating program:

5. Interpretation of the curves:

Unannealed charge vs. Temperature.

Example of Isochronal annealing

(after 20 Gy of proton irradiation)

Optically Stimulated Luminescence

(collaboration between CERN and CEM² – Montpellier)

The behavior of the SiO₂ in a mixed radiation environment and the loss of sensitivity during time, suggests to have a complementary way to measure the ionization (Dose).

A sensor based on these materials (developed for space/medical applications) already exist.

OSL @ CERN

We began the study of this new dosimetric technology following 3 different ways:

Sensitivity of the standard OSL material "strontium-sulfide doped" (SrS) to High Energy Particles Development of SrS-based compounds with calibrated neutron sensitivity Test of the integrated sensor in High Energy Particles environment.**OSL Test bench OSL Test bench** OSL DAQ LabVIEW controlled Designed for the range (50 mGy – 100 Gy)

OSL @ CERN - Sensitivity to HEP

1. Tested samples 5x5 mm $^{\rm 2}$ of SrS deposed on Kapton Foils.

- 2. Several Irradiations with different beam conditions performed at the CERN PS proton IRRAD1 facility;
- 3. Dynamic range up to 100 Gy
- 4. Material handling quite difficult due to products light sensitivity.
- 5. Charge annealing and temperature influence on trapping process have to be

studied in details.
SrS response to 24 GeV/c proton studied in details.
beam (IRRAD1 facility)

OSL @ CERN – neutron sensitive materials

1. Tested samples 5x5 mm² of different mixtures

of SrS + Polyethylene (PE)/Boron(B).

- 2. Pure SrS almost insensitive to neutrons.
- 3. Sensitivity SrS+PE ~ 20 Sensitivity SrS.
- 4. SrS + B homogeneity ?, strong annealing ?
- 5. SrS + $PE + B$ no signal! (problem during materials preparation).

New neutron irradiation is under way

at JSI TRIGA reactor in Ljubljana. *responses into IRRAD2 environment*

13

OSL @ CERN - Integrated Sensor

Sensitive material +

(SrS block sandwiched between diode and photodiode)

Radhard electronics =

(degradation of IR LED emission compensated)

RADHARD INTEGRATED SENSOR

--

BPW34F p-i-n diodes - General

Other p-i-n diodes tested in the past (University of Wollongong, Australia)

base width = 1.2 mm and ρ = 1.7 kΩ \cdot cm

 \rightarrow very high sensitivity for fluences < 10¹² part./cm²

To cover high fluences we try to investigate^ra new types of diodes \rightarrow OSRAM BPW34F

base width = 210 μ m and ρ = 2.5 k Ω ·cm

- •Devices not designed for dosimetric purposes.
- Some investigations already done also here at CERN/TIS in the past.

We are studying proton/neutron irradiated diodes comparing "on-line" and "off-line" measurement in collaboration with the CERN EP-TA1-SD group.

BPW34F p-i-n diodes – 1/2

"on-line measurement" & "off-line measurement" 0.5 • online measurement in 24 GeV/c proton beam 0.4 • offline measurement readout of the V_F under forward bias (M.Moll, A.Helienek EP-TA1-SD) 0.3 (current pulse 1 mA x 180 ms). ΔV_F (Volts) 0.2 \rightarrow Strong temperature influence: 0.1 (~ 35 mV / ºC → ~ 2x10¹² p/cm²/ ºC); \rightarrow Devices useful to measure high fluences: Ω Threshold > 1.5 x 10 12 p/cm 2 -0.1 (> 1 x 10¹² n_{1MeVeq} / cm²) $1.0E + 10$ $1.0E + 11$

 \rightarrow The relatively weak annealing now under investigation.

F.Ravotti Joint RADWG and RADMON Working Group Day – December 4th, 2003

Fluence p/cm²

BPW34F p-i-n diodes – 2/2

Protons data → Φ_{n1MeVeq} = Φ_p x *k*.

Neutrons data $\rightarrow \Phi_{\sf n1MeVeq}$ from FLUKA simulation normalized with Si-detectors fluence measurement.

- \rightarrow NIEL scaling is respected.
- \rightarrow Sensitivity of 1.1 V/ 10¹³ n_{1MeVeq}/ cm².
- \rightarrow Results coherent with previous test.
- \rightarrow Irradiations with:

lower fluence (< 4x10¹² part/cm²). higher fluence (~ 10¹⁶ part/cm²). already performed: analysis still ongoing!

BPW34F data's (IRRAD1 / IRRAD2 CERN facilities) normalized to 1MeVeq neutrons

Conclusions

RadFETs dosimeters:

- New devices can help to fit better CMS requirements.
- We need to perform isochronal measurements to finish the characterization of this technology.

OSLs dosimeters:

- We proved that SrS materials work in HEP environment;
	- \rightarrow Accurate annealing studies has to be done.
- Encouraging results in the development of neutron sensitive materials; \rightarrow Work on the materials has to be continued.

BPW34F p-i-n diodes:

- We found a device to measure high particle fluences.
- Annealing and temperature effects have to be fully investigated.

- 1. We need different technologies to monitor a mixed radiation environment with Si-based devices.
- 2. All devices under test have small dimensions.
- 3. Basically we inject a current to read voltages as dosimetric parameters.

 \rightarrow To integrate all these technologies in one PCB !

Acknowledgments

- EP Irradiation team for the use of their facilities on PS complex (http://www.cern.ch/irradiation).
- EP-TA1-SD section for their support.
- CEM 2 – Montpellier University for the support on OSL materials.
- CNRS-LAAS of Toulouse for the support on new RadFETs devices.

RadFETs calibration → PS IRRAD2 Facility

Shuttle system to place the samples at different distances (z) from target

- Deposed dose known by FLUKA simulations (M.Huhtinen).
- Optimization of the calibration for the different CMS sub-detectors.

After Maurice Glaser