A Beam Condition Monitor for CMS

Alick Macpherson CERN/PSI

BCM Group

Luis Fernandez Hernando (EST/LEA), Christoph Ilgner (EST/LEA), Alick Macpherson (CMS/CMM), Alexander Oh (CMS/CMD), Terry Pritchard (CMS/CMM), Bob Stone (CMS/CMT)

People involved in the BCM Testbeam

Jean-Paul Chatelain (CMS/CMM), Vladimir Cindro (ATLAS/ATT), Luis Fernandez Hernando (EST/LEA), Christoph Ilgner (EST/LEA), Maurice Glaser (EP/TA1), Alick Macpherson (CMS/CMM), Alexander Oh (CMS/CMD), Heinz Pernegger (ATLAS/ATT), Terry Pritchard (CMS/CMM), Federico Ravotti(EST/LEA), Rende Steerenberg (AB/OP), Bob Stone (CMS/CMT), Peter Weilhammer(EP/UGC), Steve Worm (CMS/CMT),

Beam Condition Monitor for CMS

Idea:

- CMS and Atlas investigate diamond sensors for use in beam monitoring beam conditions.
- Try to develop a common system so to simplify interfacing to the LHC

Purpose

- The Beam Condition Monitor (BCM) has to provide online radiation monitoring within CMS
- BCM is to form a central part of the radiation monitoring system for equipment safety and radiation level/beam monitoring
- The BCM should be in addition to the LHC machine protection system and Beam Loss Monitors

BCM Issues

- Allow to protect equipment during instabilities/accidients
- Provide fast feedback to the machine for optimization of beam conditions
- Provide fast feedback to the machine for detection of adverse beam conditions
- Monitor the instantaneous dose during operation
- Provide input into LHC beam abort system (1 input/ experiment)
- Could monitor bunch by bunch and also the inter-bunch spacing

Advantages of diamond for this application

- Radiation hard, low leakage currents, fast signal response (~1ns)
- Minimal Services required
- Benefit from fast signal: Use fast electronics
 - Read out ionization signal (no integration) using a ~2GHz bandwidth amplifier
- Choice of Amplifiers very similar to ones under investigation by machine group

Accident Scenarios

Unsynchronised beam abort: ~10¹² protons lost in IP 5 in 260ns

6.5E+00 1.0E+00 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 1.6E-26

•Sensors under investigation: Polycrystalline Diamond

- Fast signal response due to high mobility
- Short charge life time of polycrystaline CVD diamond
- Radiation hardness
- Minimal services required ie cooling not necessary

Evaluated using a fast extraction beam from the CERN PS at the T7 beamline (November 2003)

Generic Accidents

Dose in innermost Si-strip layer of CMS Tracker (R=22 cm)

Loss Type	Dose per event	Flux factor	Ratio
Unsynchronised abort	10mGy	1	1
One 7 TeV proton on TAS	15 pGy	10 ¹²	1500*
One 450GeV proton on TAS	1pGy	10 ¹²	10*

Unsynchronised beam abort: $\sim 10^{12}$ protons lost in IP 5 in 260ns

* Dose rates up to 1000 times higher if consecutive full bunches lost on TAS

 \Rightarrow Losses directly on the TAS worse than unsynchronised abort

For an unsynchronised abort: Little warning - CMS just has to survive it

Generic accident (eg losses on TAS): May be able to detect beam deterioration. => enable possibility of preventative/protective action => develop a Beam Condition Monitor (BCM)

Beam Accidents What are the timescales

List of machine-identified equipment failures

Name	Operation Mode	Loss Type	Loss Location	ΔT]
D1 warm	collision	local	triplet / collimator	5 turns	
damper	injection	local	arc / triplet	6 turns]
warm quadrupoles	any	distributed	collimator	18 turns]
dump septum	any	local	diluter kicker / septum	35 turns	1
warm orbit corrector	collision	local	triplet / collimator	55 urns	1
RF ?	any	local	arc / triplet / septum	55 turns	
D1 warm	injection	local	arc / triplet / collimators	120 turns	
D1 cold	collision	local	triplet / collimator	220 turns	
warm orbit corrector	injection	local	arc / triplet / collimator	250 turns]
MB quench	collision	local	triplet / collimator	280 turns]

Fastest generic beam loss scenarios: ~ 5 orbits $ie \sim 500 \mu s$ This defines the response timescale

BCM should look bunch by bunch, but form decisions on a few 100ns time scale

Conceptual BCM layout

BCM sensors close to beampipe

The BCM must be installed for the pilot run ie independent of the final pixel system

Sensors: CVD Polycrystalline Diamond

- Sensors are 1x1 cm polycrystalline diamond. Typically 300um thick
- Measurements taken with the samples fully pumped (ie charge traps filled up)
- Collection distance is stable with time

CDS124

Collection Distance:CDS126

Collection distance:

- Larger collection distance => larger signal
- Transient collection dist = internal polarisation due to changing bias
- At 1 V/um, on this diamond we get ~6000 e⁻/MIP

T7 Testbeam Hardware

November T7 Test beam: Fast extraction beam from the PS

Beam intensity: 8x10¹¹protons per spill

Fluence: ~3x10¹⁰ protons/cm²/spill at the centre of the beam spot

- \sim 1x10⁸ protons/cm²/spill in the halo
- => Models an unsynchronised beam abort

Beam profile

90 mm

Beam Profile as measures by OSL film OSL =Optically Stimulated Luminesence

mm	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
0	0.2	0.2	0.2	0.2	0.3	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.0
5	0.2	0.2	0.2	0.3	0.3	0.3	0.1	0.3	0.4	0.8	0.7	1.0	1.0	1.4	1.3	1.2	1.0	0.1	0.1
10	0.6	0.6	0.6	0.8	0.9	0.9	0.8	0.8	1.0	1.0	1.1	1.3	1.5	2.1	2.0	2.0	1.6	0.2	0.1
15	0.6	0.6	0.6	0.8	1.1	1.1	1.3	1.1	1.4	1.6	1.8	2.3	2.6	3.5	3.0	2.9	2.7	0.2	0.1
20	0.7	0.7	0.7	1.1	1.4	1.7	1.9	2.1	2.8	3.2	4.9	5.0	7.7	9.8	12.7	10.6	6.2	0.5	0.1
25	0.7	0.9	0.9	1.0	1.5	3.1	7.4	10.3	13.1	15.6	17.6	21.5	26.7	38.9	56.7	45.0	17.7	1.2	0.1
30	0.7	0.9	0.8	1.1	2.2	7.4	18.6	28.4	28.9	39.3	45.6	48.9	70.8	82.1	100	87.8	36.5	4.3	0.2
35	0.7	0.8	0.9	1.1	2.7	6.1	17.4	25.1	28.5	34.4	27.7	42.4	42.2	61.1	58.1	69.2	28.1	6.1	0.2
40	0.6	0.7	0.8	1.1	2.2	4.1	6.6	8.1	8.5	8.6	10.3	13.5	18.7	26.7	36.0	28.3	10.5	3.4	0.2
45	0.6	0.7	0.7	0.8	1.1	1.9	2.2	1.7	1.7	2.7	3.1	4.3	5.8	7.6	8.1	5.7	4.0	2.4	0.2
50	0.7	0.6	0.7	0.9	0.8	1.0	1.2	1.1	1.3	1.5	1.6	2.2	2.2	2.6	3.1	2.6	2.3	1.8	0.1
55	0.4	0.5	0.6	0.7	0.8	0.8	0.8	0.7	0.8	1.1	1.0	1.1	0.7	0.6	0.4	0.4	0.3	0.2	0.1

Film exposure of the beam after 40 bunches

Relative fluence levels

Position 0 = 1.0Position $1 \sim 0.4$ Position $2 \sim 0.2$ Position $3 \sim 0.01$

Dosimetry measurements

Beamspot Dosimetry

Used ²⁴Na for dosimetry on aluminum placed in the beam

Dosimetry done with Maurice Glaser and Federico Ravotti

<u>Result</u>

Fluence at beam "centre" = 2.8x10¹⁰ protons/cm² ± 10%

<u>Mapping of beam spot</u> Consistency between the different films, the OSL, and the aluminum

Dosimetry Results from Grid of Aluminum samples: Relative variation %											
0.0	3.3 10.2 13.8 16.5 27.7 33.1 0.0 0										
1.3	5.3	11.9	19.1	31.8	74.2	100.0	63.0	0.0			
0.0	0.0	0.0	0.0	3.4	8.0	6.2	0.0	0.0			

Single shots

Almost identical to PS beam profile

Single pulses from diamond

- Bias on Diamond = +1 V/um
- Readout of signal:
 - 16m of cable
 - no electronics
 - 20dB attenuation on signal cable (factor 10)

Single shots: Details

Diamond Collection Distance Diamond signal ~ collection distance Collection distance (CDS116) ~180 μm Collection distance (CDS126) ~130 μm For std bias voltage of 1 V/μm

Area of pulse

Output Signal

Signals from sensors are very large

- V_max (CDS116) = 88 volts => 1.76 Amps into a 50 Ohm load
- V_max (CDS126) = 61 volts => 1.22 Amps into a 50 Ohm load

Time response

Fit Gaussian to leading edge of pulses σ (CDS126) =10.5 ± 0.5 ns σ (CDS116) = 9.0 ± 0.3 ns

Comparable to $\sigma(PS)=10.5$ ns with ~6% distortion from the signal cable

=> No problem with extracting timing structure from sensors on 16 m coax cable

Multiple Bunches

C1 acts as a reservoir capacitor

=>The larger the value the longer the bias field on the can be maintained.=>Bunch amplitude variation is real

C1(CDS126)=15 nF

C1 is sufficiently large to maintain bias across the diamond for the 8 bunches.

C1R1 time constant ~15 ms \Rightarrow recharging of C1 is slow compared to bunch structure

Multiple Bunches Small Reservoir Capacitors

Reflections from impedance mismatch ⇒ Readout cables will have to be well matched to electronics C1= 100pF

 \Rightarrow Insufficient charge in C1 to maintain the diamond bias for 8 bunches

The C1R1 time constant = 100 us \Rightarrow recharging of C1 is slow compared to 8 bunch structure

Next Steps

- Finish analyzing the data that we have from the November testbeam:
 - Data taken is for the "worst case" scenario
- Build a prototype BCM (sensors+ electronics + decision logic)
 - Reduce signal to noise so to clearly see MIPs
- April 04: Return to the East Hall for dedicated fast extraction beam
 - Intensity: 10³ to 10⁶ particles/cm²
 - Test prototype electronics
 - Evaluate BCM threshold-response time parameter space including Power supply and DSS response times

Example from T11 slow extraction beam Single particle response (Ionization>1MIP)

- Fast amplifiers connected after 16m of cable
- Use T11 3.5 GeV hadron enriched beam

Yellow = CDS 154 Amplifier gain ~100 Purple = CDS 126. Amplifier gain ~11 Green = beam telescope coincidence

