Analysis framework

- Andrel Gheata
Al@EGIfline week, 5 October ‘06

B
i

PUrpose

« Provide easy-to-use tools to allow data
analysis In a coherent way.

« Suitable for analysis ranging from simple
1o very complex tasks in a distributed

envirenment

« Allow splitting complex analysis tasks in
Independent functional blocks possibly
usable by other analysis

EURctionality

« Basic Ideas described at the

« Data-oriented model composed of
Independent tasks

= [[ask execution triggered by data readiness

« Parallel execution and event loop done via
TSelector functionality

« Analysis execution performed on event-by-
event basis

@

Structure

« Analysis may be split in functional medules

= At least one
= Deriving froam T Task IHjesk

ACTIVE ACTIVE v INACTIVE

I Trask TTrask 45

« Modules are not manually inter-connected
= Connected just to input/output data containers

= A data container has one provider and possibly
several clients

= A module becomes active when all input data is ready

@

CONT 1

Data-oriented model

« Data type formalized by TClass
usage

« Any module declares a number /
of Input data slots & e

« Each slot must be connected to a
data container ofi the
corresponding type at run time

* Modules provide data at one or
more output slots

AliAnalysisTask

OUTPUT 0

@

Vianagement

Analysis modules managed by a TSelector-derived
class

= Provides access to initial input data (ESD’s, kinematics,
whatever...) for the top-level containers

= Initiates the main event loop over the entries of the input trees,
calling the Exec() method for the top-level tasks

Input data Is generally a TChain, but the framework can
manage other data types

= Retreival by event tags mechanism (see talk from Panos) — to be
Interfaced

Parallelizing analysis execution

= Functionality provided by TSelector@PROOF (see talk from Jan
Fiete)

Data flow: structure

AliAnalysisManager
TObjArray *fContainers TSelector

TObjArray *fTasks (event loop)

Top level tasks
and containers

Implementation

* Code In AliIRoot
s Inside ANALYSIS module

» Classes: AliAnalysysiManager, AliAnalysisTask,
AllAnalysisDataCoentainer, AliAnalysisDataSlot,
AliAnalysisContamerRL

= Besides the last class, no dependency to AliRoot
« Separate library to be loaded
= lIBANALYSIS NEW
*« Demo for package usage: testAna.C inside
ANALYSIS folder

AliAnalysisiVianager : public lTSelector

« CreateContainer(const char *“name, I'Class
*data_type, EAITAnalysisContType cont_type)

« Mandatery to define all' data containers that will
assembly the analysis

= Container types:
« kinputContainer — minimum 1 input container needed

* kNormalContainer — containers used for communication
between task modules

« kOutputContainer — minimum 1 output container

@

AllAnalysisiVianager (continued)

AddTask(AllAnalysisTask *task)
= At least 1 task per analysis (top task)

Connectinput(piliask, islet, pContainer)
ConnectOutput(pilrask;, islot, pContainer)
= Mandatoery for all data slots defined by used analysis modules

InitAnalysis()

« Performs a check for data type cosistency and signal any illegal
circular dependencies between modules

= J0 be called by TSelector::Init()
ExecAnalysis()

= Starts the analysis
= [0 be called by TSelector::Process()

@

AllAnalysisiiask : public TTask

« User analysis module subclass this

« Definelnput/Output(int_t islet, TClass
*type)
= Mandatory at least 1 input & 1 output
» Usually declared! in the class constructor
« Virtual veid Exec(Option_t *option) = 0
« Manadatory to Implement in the derived class

« [his actually implements how the analysis
module processes input data

Analysisimoedule (task)

ExecuteTasks()

fInputs inputo inputt| inputz

A Ol O

AIiAnaIysisTask}
Jt O

fOutputS out0 outl | out2

@

IHow! te Implement Exec()

« Accesing data from input slots

= When Exec() I1s called, data will be always available at all
declared inputs

= Use: MyClass *data = (MyClass*)GetinputData(islot)
« Processing Input data
= In case of events, organize track loop

« Publishing the result at output
= Mandatory to be done at the end of event processing
= Use: PostData(lnt_t islot, TObject *result, Option_t *option)

« Will notify the container connected to output and all dependent
daughter tasks that data is ready

« Subtasks activated when all inputs are ready, executed by the last
provider

« Option — specifies If data should be written to a file

@

AllAnalysisibataContainer

Normally a class to be used ‘as IS’
= Enforcing a data type deriving from TObject

« For nen-TObject (e.g. basic) types one can subclass and append
the needed types as data members

Three types of data containers
= Input — containing Input data provided by AliAnalysisManager
= [ransient — containing data transmitted between modules

= Output — containing final output data of an analysis chain,
eventually written to files.

One can set a file name If the content Is to be written

AlrAnalysisContainerRL — special container using
AliIRunlLoader to access specific data
= [0 be moved in a separate library

@

Connection via data containers

Parent task é

e

Daughter tasks

@

AllAnalysisbatasiot

« Input/Output task slots

< Not a class to be handled by users

=« Can be declared/created in association with a
task, using methoeds belonging to
AliAnalysisTask

@

Example: ACD parallel proeduction

ESD container

DO_Filter_Task

HBT_ Filter Task

AOD1

AOD2

DO _Analysis_Task

HBT_Analysis_Task

-

=ia

Conclusions

« Analysis framework in AliRoot

= Provides all needed functionality, but there are also
some basic to-do’s left

« Connection to event tag mechanism
« TSelector functionality connection

« Framework quite flexible and simple to use

« See ANALYSIS/testAna.C as a simple
example on how to use the framework

« Additional functionality, bug fixes, optimizations
certainly needed

=« Feedback would help

