Computing Upgrade

Juerg Beringer Lawrence Berkeley National Laboratory

- Introduction
- Plans and funding
- Current system and shortcomings
- Requirements for planned system
- Project plan
- Conclusions

PDG Computing System

- The presently used system dates back to late eighties
 - NB: This is before the web was born
 - At that time it was an extremely modern system that held up amazingly well over such a long period of time
- Yet in spite of hardware upgrades from original VAX to now Linux PCs, software philosophy still dates back to singleuser data entry on an ASCII terminal

Upgrade is Urgent

- We can no longer handle current requirements w/o great risk to data integrity and availability
 - Amount of data, number of papers covered, and number of reviews more than tripled since current system was created
 - Complexity of data (often involving searches) has grown greatly
 - PDG collaboration was very small, but has now grown to 170 physicists worldwide (all volunteers except in Berkeley)
 - Giving the HEP community electronic access to the information in the PDG database requires a new system
- Several upgrade attempts since mid 1990s did not converge
- Urgency of completing at least a partial upgrade increasingly evident by 2004
 - Risk of hardware failure (no replacement system)

Plan in 2004

- Lacking the necessary resources to carry out full upgrade, we decided on a pragmatic (albeit not ideal) approach that would ensure our ability to continue producing the RPP
- Upgrade in 3 phases:
 - Phase 1: Switch to partially upgraded system for RPP 2006
 - Switch to modern hardware (Linux servers)
 - Reimplementation of existing Oracle/FORMS editor interface
 - Provide database viewer and initial version of encoder interface
 - Phase 2: Improve partially upgraded system
 - Address technology choices, long-term maintainability, documentation
 - Improve or replace existing interfaces as necessary
 - Add new tools (e.g. for handling of Reviews)
 - Phase 3 (if deemed necessary): Redesign database structure

Plan in 2004

- Lacking the necessary resources to carry out full upgrade, we decided on a pragmatic (albeit not ideal) approach that would ensure our ability to continue producing the RPP
- **Upgrade in 3 phases:**
 - Phase 1: Switch to partially upgraded system for RPP 2006
 - Switch t
 Reimple Completed end of 2005 terface

 - Provide database viewer and initial version of encoder interface
 - Phase 2: Improve partially upgraded system
 - Address Starting now term maintainability, documentation ces as necessary

 - Add new tools (e.g. for handling of Reviews)
 - Phase 3 (if Not needed Redesign database structure

Contributors to Phase 1 of the Upgrade

From COMPAS group, IHEP Protvino:

- Kirill Lugovsky (web interfaces)
- Slava Lugovsky (web interfaces)
- Vitaly Lugovsky (core libraries, database, left 2004)
- Lyudmila Lugovskaya (documentation, left 2004)
- Vladimir Ezhela (group leader, retired)
- Oleg Zenin (group leader, new)

From LBNL:

- Juerg Beringer (project leader, since March 2004)
- Orin Dahl (auxiliary programs, Oracle/FORMS related work, retired)
- Piotr Zyla (daily operation, production tasks, editor interface)

All part-time contributors, mostly at the 10% to 70% level

Starting with Phase 2

- Phase 1 completed in time for RPP 2006 production
 - Reviewed in December 2005.
- Proceeded to planning for phase 2
 - Estimated effort of 4 FTE-years

Written in 2006

High-Level Requirements and Roadmap for PDG Computing

Juerg Beringer Particle Data Group Lawrence Berkeley National Laboratory

This document summarizes the high-level requirements for the upgraded PDG computing system and proposes a roadmap for completing the upgrade. It is intended to serve as a starting point for a cost estimate for the completion of the upgrade project.

- Funding from NSF and DOE has started ...
 - Supplement of 0.2 FTE/year from NSF (PHY-0652989, April 2007)
 - In May got 0.3 FTE supplement from DOE for remainder of FY08
 - DOE review in Washington D.C. on September 12, 2008
 - Review went extremely well; continued significance of PDG affirmed
 - One major comment:

Starting with Phase 2

- Phase 1 completed in time for RPP 2006 production
 - Reviewed in December 2005
- Proceeded to planning for phase 2
 - Estimated effort of 4 FTE-years

Written in 2006

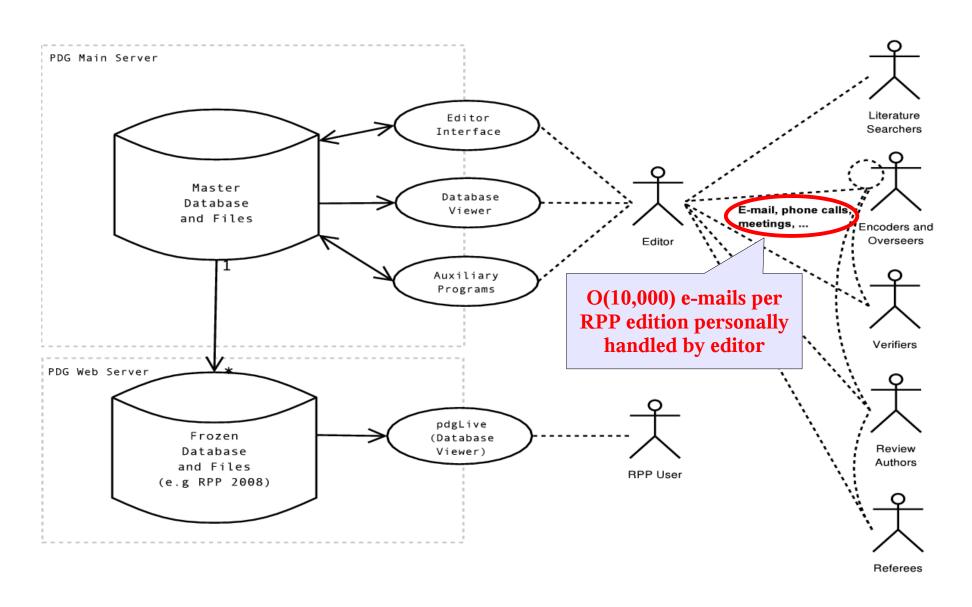
High-Level Requirements and Roadmap for PDG Computing

Juerg Beringer Particle Data Group Lawrence Berkeley National Laboratory

This document summarizes the high-level requirements for the upgraded PDG computing system and proposes a roadmap for completing the upgrade. It is intended to serve as a starting point for a cost estimate for the completion of the upgrade project.

- Funding from NSF and DOE has started ...
 - Supplement of 0.2 FTE/year from NSF (PHY-0652989, April 2007)
 - In May got 0.3 FTE supplement from DOE for remainder of FY08
 - DOE review in Washington D.C. on September 12, 2008
 - Review went extremely well; continued significance of PDG affirmed
 - One major comment:

Even more money to make sure PDG succeeds!



Feedback from DOE

- Have heard from DOE how pleased they are with the review
 - Related to the computing plan, they will suggest we plan for 2 FTE for 3 years rather than 2 as they were convinced by the reviewers that we will likely need that effort
 - Will propose 0.5 FTE for maintenance when project is completed
 - Funding during next 6 months will be challenging due to "Continuing Resolution" in Congress
- Based on positive outcome of DOE review, we are now starting with work on phase 2 of the upgrade
- Funding is not yet assured we need help from the Advisory Committee to keep pushing until the money is in hand

Current Production System

Technical Details

Hardware

2 Linux-based servers

Software

- PostgreSQL, Apache Tomcat, Apache web server
- O(100k) lines of application code
 - Fortran and C for auxiliary programs
 - Kawa and BRL for user interfaces
 - HTML and JavaScript
- Mimetex (tool to generate gif images from TeX snippets)
- TeX and TeXsis

Database

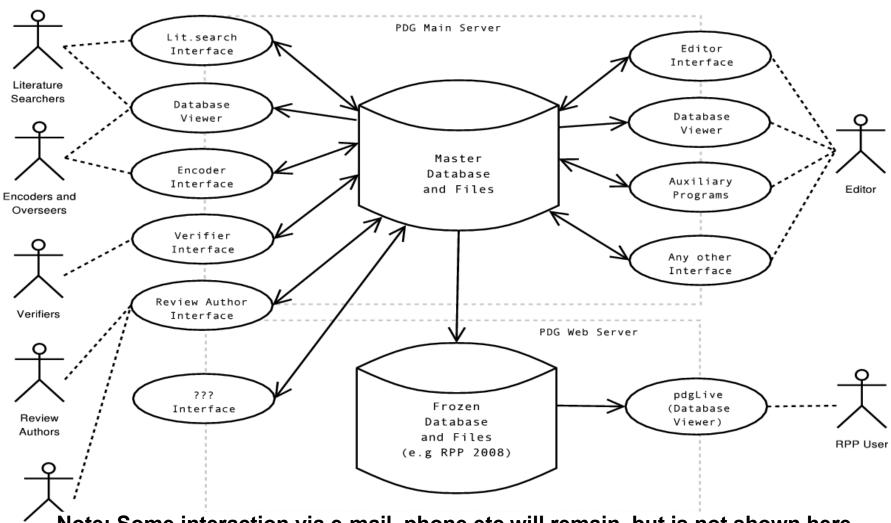
- Small (ASCII dump is 40MB) but very complex database
- ~100 database tables, about 2/3 storing scientific information

Shortcomings (I)

- System designed as single-user system and doesn't scale
 - No support for concurrent data entry by multiple users
 - No support for workflow management
- All data entry must go through editor
- Arcane, inefficient and error prone data entry method
 - Editor interface basically only graphical SQL editor
- No support for producing Reviews
 - Authors, referees and overseers communicate mostly by e-mail
 - Updated review source files are circulated by e-mail and must often be merged by overseer or editor
 - Review authors have to deal with TeXsis (a special TeX-based macro package used internally by PDG), or editor has to convert from other formats

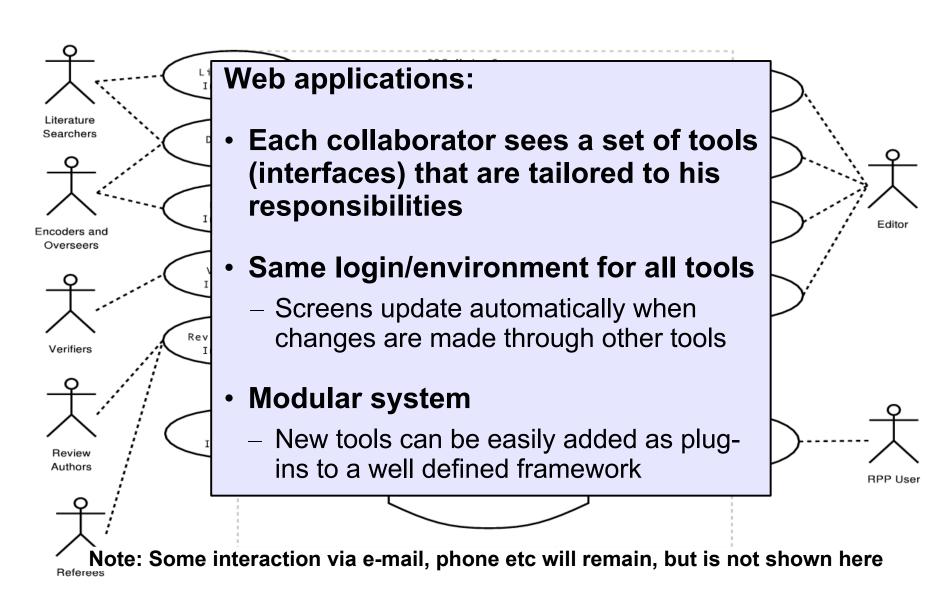
Shortcomings (II)

- No support for verification of Listing entries
 - Proofs are sent by e-mail to verifiers hoping for a reply in case of a problem ("no news is good news")
- Lack of information on progress of Listings and Reviews
 - Difficult to manage hundreds of people towards a timely completion of RPP if current status is not known
- Current user interfaces are not maintainable long-term
 - Arcane tools, programming languages (Kawa, BRL)
 - Not documented
 - But are very valuable prototypes of what we need
- Auxiliary programs written in Fortran (and C)
 - Maintenance completely dependent on single retiree



Computing Needs

- A modern, modular, scalable, easy-to-use, maintainable and well-documented computing infrastructure
- Production quality system PDG data must be correct
 - Extensive error-checking and cross-checking built into system
- Need to support all areas of our work, including in particular:
 - Decentralized, web-based data entry and verification for Listings
 - Interaction with over 100 review authors
 - Monitoring of progress in RPP production
 - Programs for evaluation of data (fits, averages, plots, ...)
 - Expert tools for editor, including creation of book manuscript and static web pages (PDF files)
 - Interactive browsing of PDG database similar to pdgLive



Planned System

Note: Some interaction via e-mail, phone etc will remain, but is not shown here

Planned System

Required Web Applications (I)

Encoder interface and Literature Search interface

- Future primary data entry interfaces
- Task driven, easy-to-use tools for non-experts
- Single-user prototype available but needs to be redesigned as production-quality tool for concurrent usage

Database viewer (pdgLive)

- Web-based application for browsing of database contents
- Dynamically generates web-pages in format similar to RPP book
- Used both for pdgLive (on published RPP edition),
- And as tool to inspect new entries during encoding process
- Provides direct links from RPP entries to SPIRES to actual papers
- Current version of pdgLive is not maintainable, must be replaced

Required Web Applications (II)

Verifier interface

 Manage verification process and provide web page for verifiers to report their acceptance or corrections

Review author interface

- Keep track of status and responsibilities for each review
- Manage different versions during authoring and refereeing

Editor interface

- Expert-only web-based GUI to edit raw content of PDG database
- Only used by editor
- Diminishing role as most data entry tasks will be done decentralized through Encoder Interface

Status Reporting

Reports on progress of Listings & Reviews

Required Web Applications (III)

User Profile Management and Configuration

- Users (including collaborators) can create a profile, order products, and update their address and preferences
- Configuration tool allows coordinators and editors to assign responsibilities

Mailing System

- Send messages to different groups of users, e.g. to announce availability of new RPP edition, to remind collaborators about deadlines, etc.
- Interface for updating Institution Database
- Additional smaller applications can be added easily when needed once the framework is available

Required Programs & Scripts

Data analysis environment

- Environment with both access to PDG data and to numerical algorithms, data analysis and graphics tools (for example ROOT, CERN libraries, ...)
- Preferably has option to work interactively

Auxiliary programs and scripts

- Fitting, averaging, graphics, production of TeX files for Listings
- Used directly by editor and indirectly through encoder interface
- Ultimately based on above data analysis environment

System Monitoring

 Scripts and web pages that alert us as early as possible to problems (e.g. web server down, low disk space, etc.)

Industry-Standard Software Development

Software development process should

- Adhere to widely-adopted practices
- Be well-documented (including the code itself)
- Minimally personalized (to facilitate long term code maintenance)
- Maximally efficient (use existing tools, components, libraries)

Software architecture must be

- Adequate to fulfill functional requirements
- Flexible to accommodate further extensions/modifications
- Scalable to cope with ever-increasing load
- Lean system (easy to maintain)

Key Technology Principles

- Chosen technologies must be
 - Suitable for specific PDG problems
 - "one size does not fit all"
 - Stable and mature production system
 - Sustainable in the long run (~10 years from now)
 - based on standards
 - Popular
 - another guarantee for stability
 - For which there is sufficient expertise (at LBNL)
 - Relatively easy to learn and deal with
 - Free (open source, GPL, etc.)

Three-Tier Web Architecture

Web Browser Web Application Server Resources <u>(J2EE)</u> **JDBC** Persistency JSP **RDBMS** Execute AJAX Servlets Session enabled File I/O **Data** Web pages **Files Algorithm HTML** (HTML, Execution JavaScript) JS CALL **Progran** libraries Etc. - interact with user - generate dynamic HTML - object-relational mapping - input processing - AJAX back end support - sessions support - dynamic page Access Reposit. - static HTML pages - user authorization rendering (CVS) - JavaScript libraries - complex application logic - rendering of formulas - interface to legacy code

- monitoring, etc.

(isMath, mathML)

Web Applications Domain

J2EE-based Web Application Framework

- Commonly used industry standard (ex: eBay 1B transactions/day)
- Dynamic HTML generation
- An infrastructure for building scalable, distributed Web apps
- A number of useful services/mechanisms (ORM, sessions, etc.)
- Leverage from broad community
- Employs component-based development approach
- Multiple implementations exist (free examples: GlassFish, JBoss)

AJAX-enabled Web pages on the client side

- User-friendly and highly interactive GUI behavior
- De-facto standard for Web pages
- Asynchronous interaction with the Web server
- "Smart" user input (auto-suggestion/auto-completion "as you type")

Choice of Programming Languages

- Select minimal set of programming languages that meet requirements and are widely accepted
 - Java and JSP for the Web Application Framework backend
 - JavaScript for client-side HTML (AJAX)
 - Python API for programmatic access to database
- Benefits of leverage from broad community of developers
 - Maintainability

Why not use just one language?

Each has its own benefits (Java, JS, Python)

Handling Legacy Applications

- Legacy FORTRAN applications
 - Restructured as libraries (to be usable as resources)
 - Migrated onto the unified high-level database access API

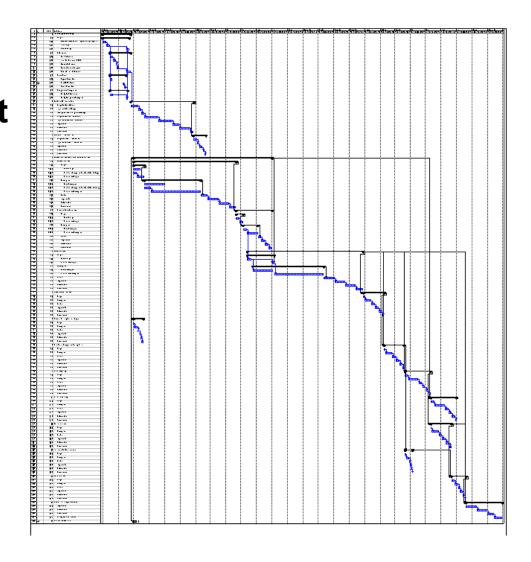
Key Computing Personnel

Cecilia Aragon (50%)

 Computer scientist/architect/programmer, 20+ years experience in computing including physics applications and user interface design; PhD in CS from UC Berkeley. Most recent project: Sunfall for the Nearby Supernova Factory.

Igor Gaponenko (25-50%)

 Computer software engineer/architect, ~20 years experience in scientific databases and automation of HEP experiments; MS physics/CS. Most recent project: BaBar.


Computing professionals (125%)

- Two experienced developers with suitable skills
- Work will be performed in close collaboration with PDG physicists (J. Beringer, O. Dahl, P. Zyla)

Computing Project Plan (As Presented to DOE)

- We have prepared a WBS (Work Breakdown Structure) and Gantt chart
 - Upgrade requires 2 FTEs for 2 years (4 FTE-years)
 - Detailed project plan
- Includes task breakdown and resource allocation

High Level WBS (4 FTEs total effort)

WBS Task Name	Start	End
 Initial Design and Planning 	8/1/2008	9/25/2008
2. Database Abstraction Layer	9/26/2008	2/3/2009
3. Data Analysis Environment	2/4/2009	2/27/2009
4. Encoder Interface/Lit. Search Int.	10/1/2008	7/8/2009
5. Database Viewer	5/21/2009	1/8/2010
6. Review Author Interface	1/11/2010	2/19/2010
7. Refactor Existing Auxiliary Programs	10/1/2008	10/20/2008
8. User Profile Management/Mailing	2/22/2010	4/1/2010
9. Status Reporting	4/2/2010	5/19/2010
10. System Monitoring	5/20/2010	7/6/2010
11. Verifier Interface	5/20/2010	6/29/2010
12. Institution Database Interface	4/2/2010	4/16/2010
13. Editor Interface	6/30/2010	7/21/2010
14. Final System Integration	7/22/2010	9/30/2010

Note that design phases for some components are shorter because of IHEP prototype

Challenges (I)

Distributed data entry

- Concurrency issues (locking) to be addressed in the design
- Need to define exactly when changes become visible to other collaborators
- Editor must still sign off each individual entry / change

Use of TeXsis and TeX needs to be rethought

- Use of TeX unavoidable for printed book(let),
- but not ideal for web output
- How to efficiently display equations in a web browser?
 - Investigating jsMath, MathML, conversion to gif images, ...

Browser and platform independence for data viewer

Use existing libraries where possible

Challenges (II)

Database structure and contents

- Current database structure for scientific information non-optimal since some modern database features were not available or efficient when current system was designed
 - Need middleware to address this
- Improve separation between content and output format
 - Use of TeX snippets in data entries
 - Non-unique specification of particles (e.g."K_s^0" prints same as "K^0_s")
- Concurrency requires additional locking information
- Workflow information needs to be added / redesigned
- Mechanism for history and errata needs to be revisited
- All changes (to the database) must be made incrementally without jeopardizing the ongoing production of the Review

Risks and Mitigations (I)

1. PDG is different from commodity interfaces

- Database structure for scientific information
- Non-ASCII formats for particles
- Use of custom formatting macros and TeXsis
- Mitigation: careful design, staff experience in building physics systems

Risks and Mitigations (II)

2. Technology risks

- J2EE, Python platform stability
- Mitigation: industry standard, weight of community (ex. RHEL)

3. Internal risks

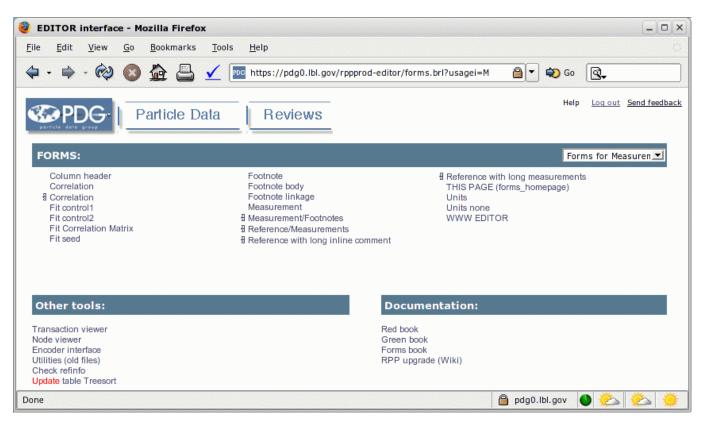
- Underestimate amount of work, loss of staff
- Mitigation: incremental plan (do highest priority items first), use industry standard technologies, large pool of expertise at LBNL

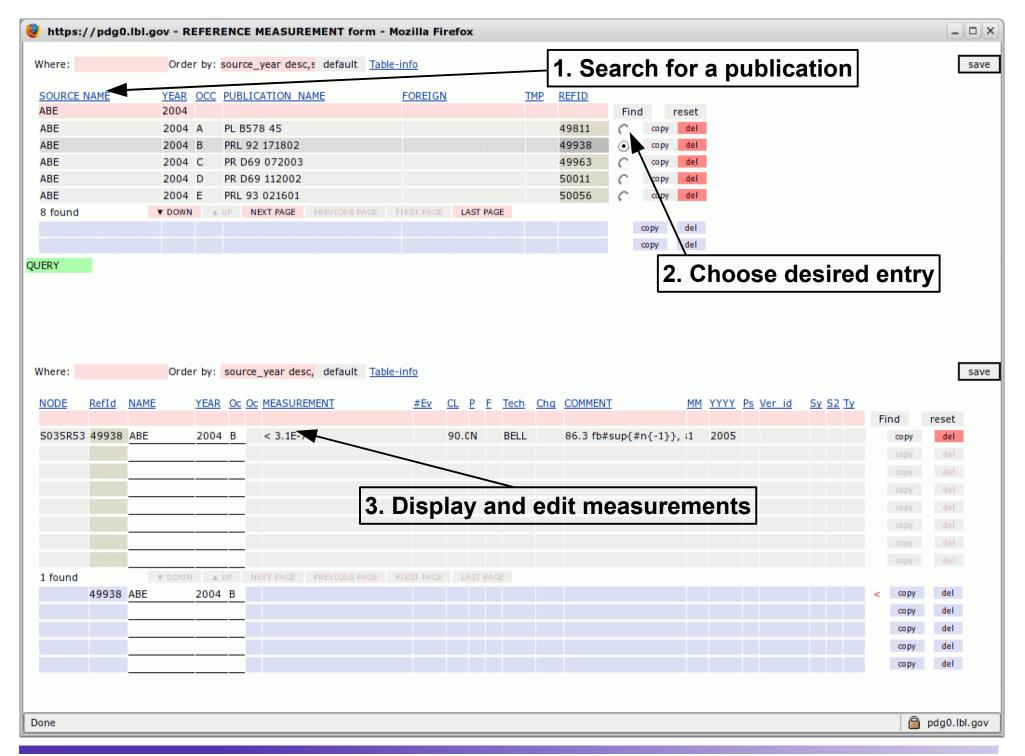
Contingency Plans

- Design of framework so new tasks can easily be added
- If necessary, can de-scope individual tasks and still accomplish main goals
- According to preliminary feedback from the DOE review, the computing upgrade should be funded at 150% of our request

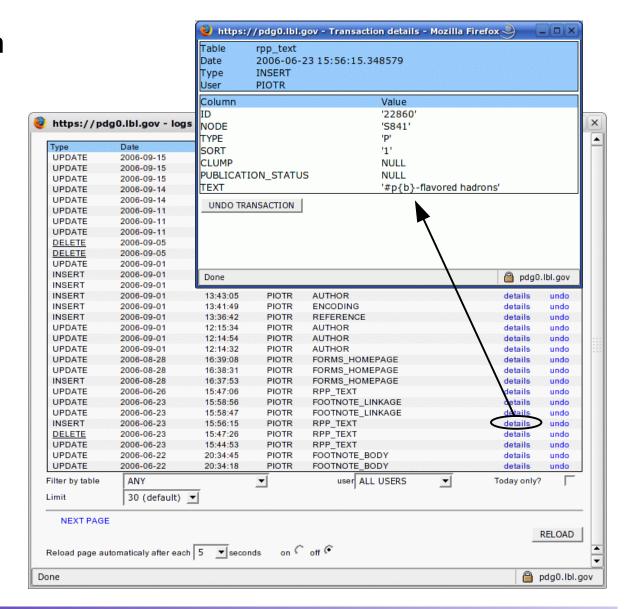
Conclusions

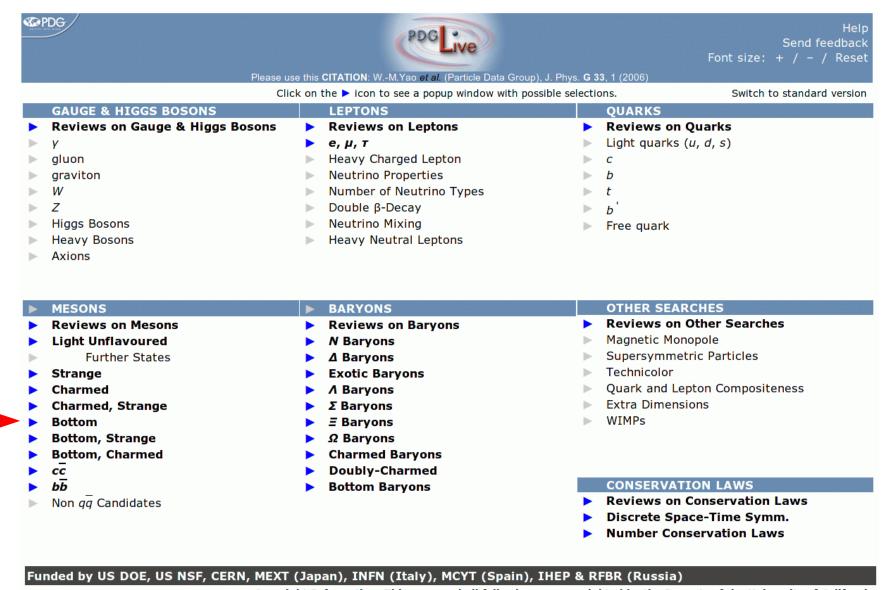
- Completing the upgrade of the aging PDG computing system has become critical
- We have a clear understanding of the requirements for the future PDG computing system
- We have identified a team of experienced LBNL computer scientists for the design and implementation of the upgrade
- We have developed a project plan and a high-level design
 - 4 FTE-years
 - Discussed risks, mitigation, contingency plans
- Hope for funding from DOE plus NSF for 6 FTE-years
 - Supplements already received for FY07/08 allows proceeding as planned until end of February 2009
 - But money is not yet in hand, need to keep pushing




Backup Slides

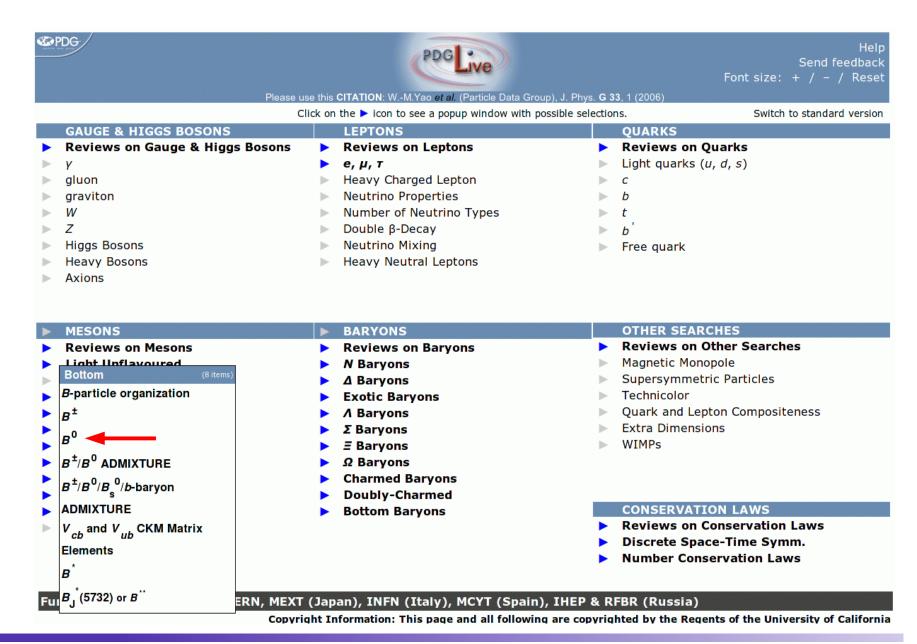
Editor Interface


- An expert-only web-based GUI to edit the raw content of the PDG database
- Knows about connections between tables and constraints on input values



Editor Interface Tools

- Database transaction logger with "undo"
- Improved access to tree table
- Easily customizable to support new database tables
- Sufficient for shortterm
- Maintenance issues



pdgLive (http://pdglive.lbl.gov)

Copyright Information: This page and all following are copyrighted by the Regents of the University of California

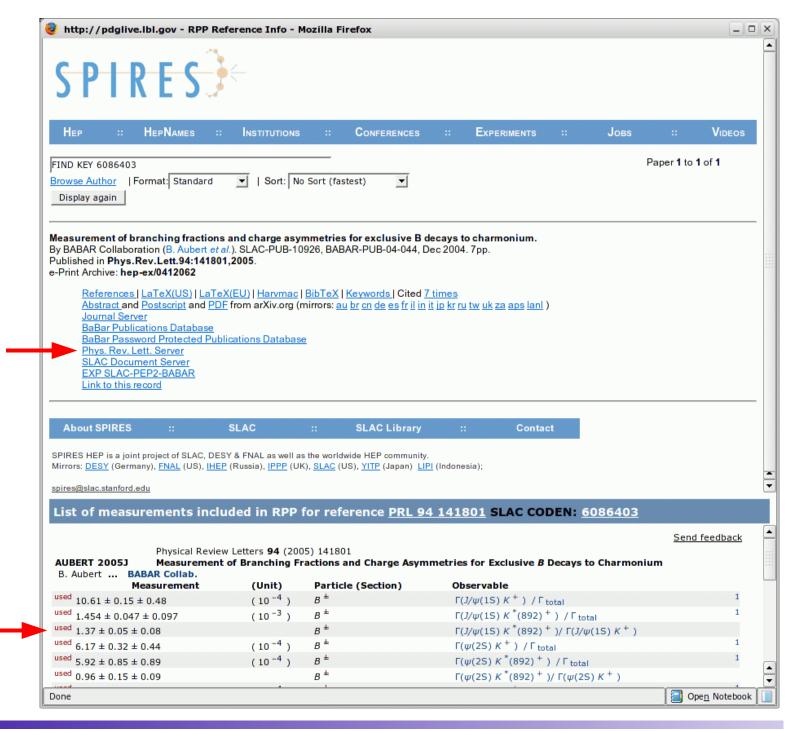
Select B⁰

Select Decay Mode

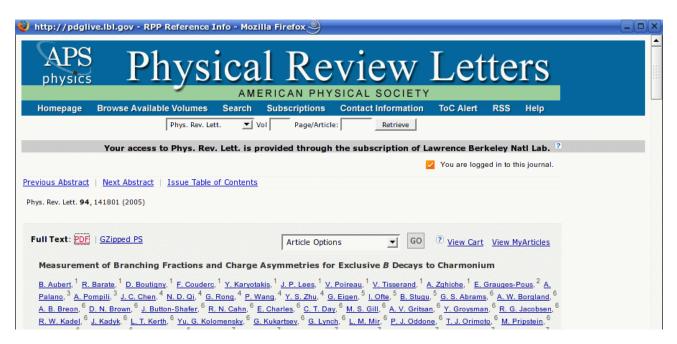
Γί	Mode	Fraction (Γ_i / Γ)	Scale factor/ p Confidence level (MeV/c)
	►B ⁰ decay modes		
	▶Inclusive modes		
	D, D*, or D _s modes		
	▼ Charmonium modes		
Γ ₁₃₄	η c K ⁰	$(9.9 \pm 1.9) \times 10^{-4}$	1753
Γ ₁₃₅	η _c K [*] (892) ⁰	$(1.6 \pm 0.7) \times 10^{-3}$	1648
Γ ₁₃₆	J/ψ(1S) K ⁰	$(8.72 \pm 0.33) \times 10^{-1}$	4 1683
Γ ₁₃₇	J/ψ(1S) K ⁺ π ⁻	$(1.2 \pm 0.6) \times 10^{-3}$	1652
Γ ₁₃₈	J/ψ(1S) K [*] (892) ⁰	(1.33 ± 0.06) \times 10 $^-$	³ 1571
Γ139	J/ψ(1S) η K g	$(8 \pm 4) \times 10^{-5}$	1508
Γ140	J/ψ(1S) φ K ⁰	$(9.4 \pm 2.6) \times 10^{-5}$	1224
Γ ₁₄₁	J/ψ(1S) K(1270) ⁰	$(1.3 \pm 0.5) \times 10^{-3}$	1390
Γ142	J/ψ(1S) π ⁰	$(2.2 \pm 0.4) \times 10^{-5}$	1728
Γ ₁₄₃	J/ψ(1S) η	<2.7 × 10 ^{- 5}	CL=90% 1672
Γ144	J/ψ(1S) π ⁺ π ⁻	$(4.6 \pm 0.9) \times 10^{-5}$	1716
Γ ₁₄₅	$J/\psi(1S) \rho^0$	$(1.6 \pm 0.7) \times 10^{-5}$	1611
Γ146	J/ψ(1S) ω	<2.7 × 10 ^{- 4}	CL=90% 1609
Γ147	$J/\psi(1S) \ \phi$	<9.2 × 10 ^{- 6}	CL=90% 1519
Γ ₁₄₈	J/ψ(1S) η (958)	<6.3 × 10 ^{- 5}	CL=90% 1546
Γ ₁₄₉	J/ψ(1S) K ⁰ π ⁺ π ⁻	$(1.0 \pm 0.4) \times 10^{-3}$	1611
Γ ₁₅₀	$J/\psi(1S) K^0 \rho^0$	$(5.4 \pm 3.0) \times 10^{-4}$	1390
Γ ₁₅₁	$J/\psi(1S) K^*(892)^+ \pi^-$	$(8 \pm 4) \times 10^{-4}$	1514
F152	1//15\ V*/002\ 0 = + = -	(66+22) 40-4	1447

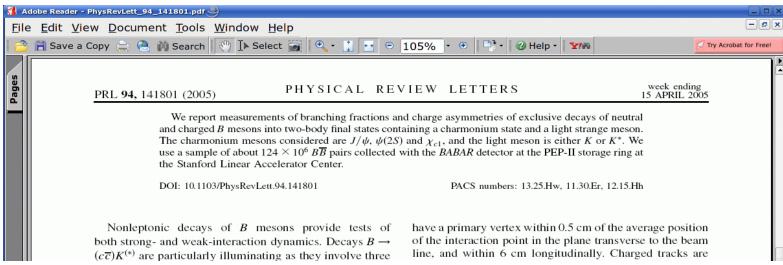
See Data Listings

$\Gamma(J/\psi(1S) K^0) / \Gamma_{total}$ References History since 1990								
<i>VALUE</i> (10 ⁻⁴)	CL%	EVTS	DOCUMENT 1	TD.	TECN	COMMENT		
8.72 ± 0.33	OUR A	AVERAGE						
$8.69 \pm 0.22 \pm 0.30$			AUDEDT 200	05J : Physical Revie	DADD	⁺ e ⁻ → Y(4S)		
$7.9 \pm 0.4 \pm 0.9$		·	Letters 94 (2	005) 141801	ew.	$e^+e^- \rightarrow Y(4S)$		
$9.5 \pm 0.8 \pm 0.6$			1 AV Measuremen	t of Branching Frac	ctions and Charge	$e^+e^- \rightarrow Y(4S)$		
11.5 ± 2.3 ± 1.7			AE Asymmetries for Exclusive B Decays to Charmonium p at 1.8 TeV					
$7.0 \pm 4.2 \pm 0.1$			3 BORTOLETTO	92	CLEO	e + e - → Y(4S)		
$9.3 \pm 7.3 \pm 0.1$		2	⁴ ALBRECHT	90J	ARG	$e^+e^- \rightarrow Y(4S)$		
* * * We do not use t	he followi	ing data fo	r averages, fits,	limits, etc. * * *	k			
$8.3 \pm 0.4 \pm 0.5$			¹ AUBERT	02	BABR	Repl. by AUBERT 2005J		
$8.5 + 1.4 \pm 0.6$			¹ JESSOP	97	CLE2	Repl. by AVERY 2000		
$7.5 \pm 2.4 \pm 0.8$		10	³ ALAM	94	CLE2	Sup. by JESSOP 1997		
<50	90		ALAM	86	CLEO	$e^+e^- \rightarrow Y(4S)$		

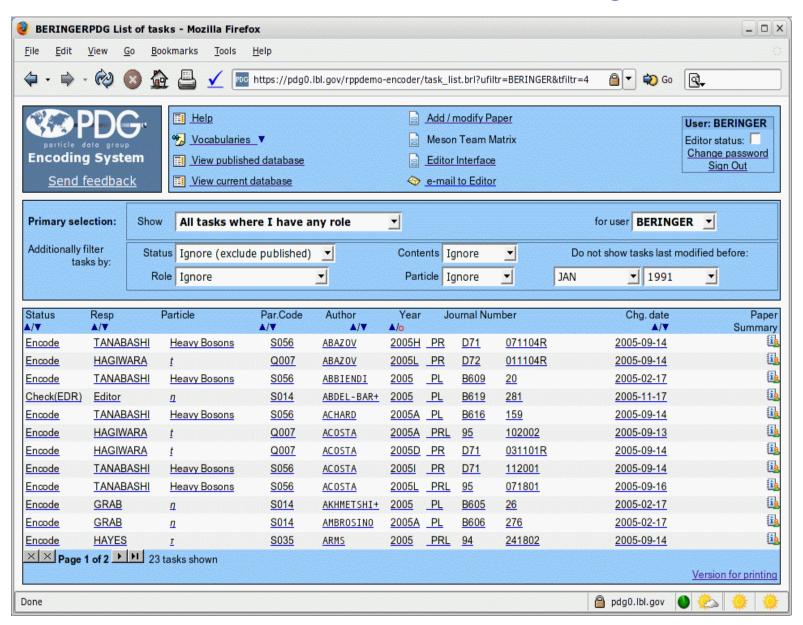

¹ Assumes equal production of B^+ and B^0 at the Y(4S).

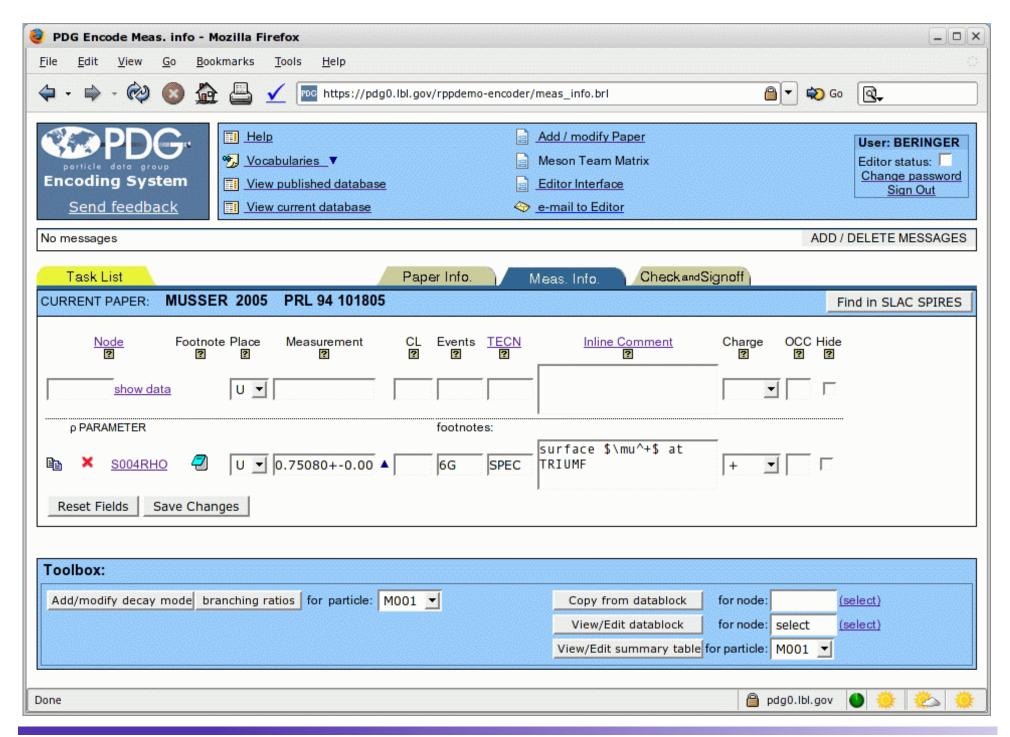
² ABE 1996H assumes that B($B^+ \rightarrow J/\psi K^+$) = (1.02 ± 0.14) × 10⁻³.

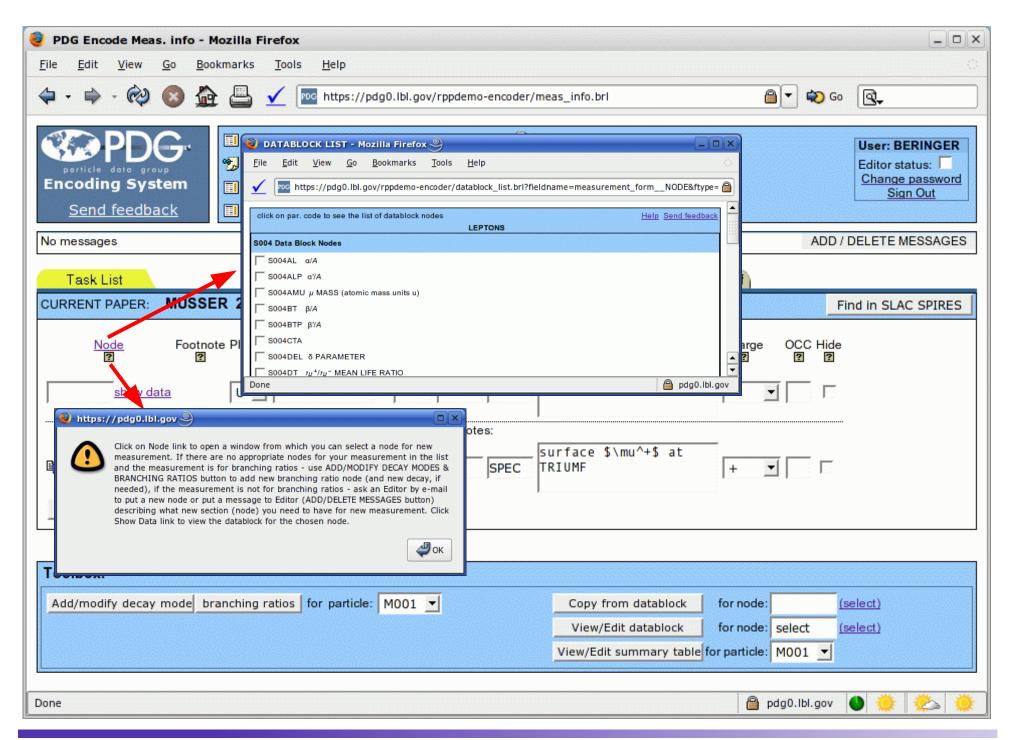

³ BORTOLETTO 1992 reports $6 \pm 3 \pm 2$ for B($J/\psi(1S) \rightarrow e^+e^-$) = 0.069 \pm 0.009. We rescale to our best value B($J/\psi(1S) \rightarrow e^+e^-$) = (5.94 \pm 0.06) \times 10 $^-$ 2. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the Y(4S).


⁴ ALBRECHT 1990J reports $8 \pm 6 \pm 2$ for B($J/\psi(1S) \rightarrow e^+e^-$) = 0.069 \pm 0.009. We rescale to our best value B($J/\psi(1S) \rightarrow e^+e^-$) = (5.94 \pm 0.06) \times 10 $^-$ 2. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the Y(4S).

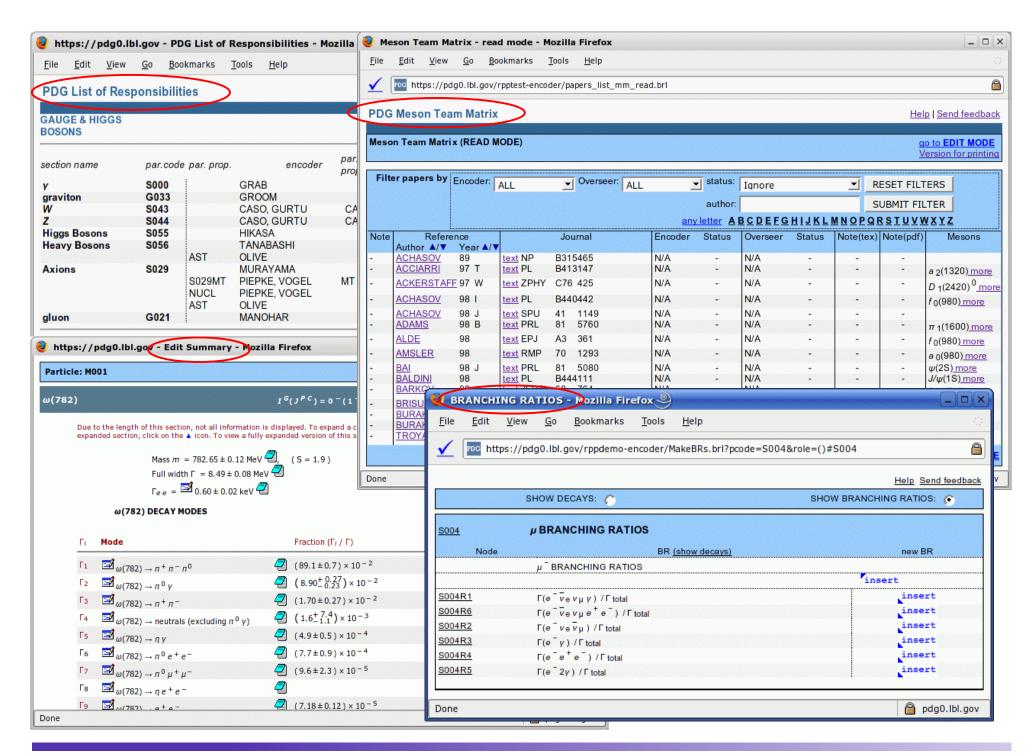
Link to SPIRES




Link to PRL Web Site and Retrieve Paper






Encoder Interface Prototype

