
Important Glue Bits:
Basic Units: GlueService (SRM endpoint - unique)
 GlueSE (Storage Element)
 GlueSEArchitecture: disk/multidisk/tape/other[1]
 GlueSA (Storage Area)
 GlueSAType: permanent/durable [2]
 GlueSAPath: /path/for/vo/on/my/se
 GlueSAAccessControlBaseRule: VOName

[1] For MSS use “tape” for disk only SEs use “disk” or “multidisk”.

[2] For start of SC4 use as we redefine (Permanent means copy goes to tape, system
manages cache; Durable means copy stays on disk, users manage cache). This no
longer makes any statement about a SE’s policy on file lifetimes.

N.B. Tests with DPM: When setting GlueSAType=durable copies with lcg-cr
succeed. Attempting to get two an SE to advertise permanent and durable SAs seems
to make the site-BDII unhappy – further investigation needed!

I suggest is adding an option to the GFAL API (which I haven't looked at - Jean-
Philippe, you can correct me if this is too far off the mark) allowing the specification
of a desired "storage type". For the moment valid values being "permanant", "durable"
or null (read "any"). This can be exposed in lcg-utils as something like "--stype".
Then

Requested Storage Type Storage Types Found Action

permanent permanent copy to permanent path
permanent durable error

durable permanent error
durable durable copy to durable path

null permanent copy to permanent path
null durable copy to durable path
null both copy to permanent path

This maintains the current behaviour for MSSs and DPM disk only SEs (particularly
in the null/both case), but allows the new functionality to be added sensibly.

Looking forward to the new SRMv2 era, if Don's suggestion of the triple axis of
storage parameters is adopted then perhaps this becomes

 --stype durability:accessability:lifetime

with backward compatible behaviour (the important point here is to try and avoid
breaking things in the future, at least as much as can be foreseen).

