- PL500 is multichannel low voltage power supply
- Modular design
- Max total output power up to 3kW
- 3U box

- Input 240V AC
- Selectable output levels

min. to max. range	max. output	(with C, E, H, K mains input)
2 7V	115A / 550W	type MEH
4 10V	85A / 650W	type MEH
7 16V	46A / 550W	type MEH
12 30V	23A / 550W	type MEH
30 60V	13.5A / 650W	type MEH
2 7V	(+/-) 20A / 140W (280W)	type MDH
7 24V	(+/-) 11.5A / 140W (280W)	type MDL
7 30V	(+/-) 7.4A / 180W (360W)	type MDL

MCU with CAN bus

- Design
 - Half bridge forward converter
 - UC3825 PWM chip UNITRODE
 - Crate MCU based on PCF80C529 PHILIPS
- Features
 - soft start
 - sense feedback inputs
 - CAN bus steering or RS232 steering

- Future features
 - PFC controller
 - water cooling
 - Radtol control board
- Potential future problems
 - non hardwired protection circuits
 - strong dependency of behavior on MCU

- LHC experiments joint activity group
 - ALICE, ATLAS, CMS, LHCb + EP-ESS group (Bruno Allongue)
- Pre-qualification criteria for LHC experiments
 - Radiation criteria
 1x10^11 p/cm^2 (TID ~14krads,NIEL ~ 1.6 x 10^11 n/cm^2 at 1MeV)

- Magnetic field criteria
 <50mT ATLAS Muon barrel or <100mT
 ATLAS Muon end cap, <500mT for ALICE
 - test in preparation at CERN Prevessin H8 area
- Known results
 - SEE measurements shown that DCDC converter boards survived requested level - special presentation

- Conclusion
 - SEE test done for DCDC converters qualified
 - SEE test must be done for input stage or PFC and for MCU units
 - magnetic test in preparation

- Conclusion from last test in Louvain
 - All DCDC converters ran continually without trip off or other observable problems
 - Rectifier module was probably damaged by radiation after ~8.5 E 10 p /cm^2. Problem found in optocoupler which sends information about finishing of softstart sequence to MCU
 - MCU didn't tested

- Decision taken to make a test in TCC2
 - no available test facility around up to the summer 2002
 - closest date in available facility August 2002 in Louvain
- Test for TCC2 prepared during March and part of April
 - Test of MCU with improved SW & AC/DC converter with rad-tol optocoupler

- Test setup
 - common setup for PL500 & TILECAL brick test
 - setup placed in shielded area ~ 25m from the test place - no acces during beam
 - control computer accessible on-line & off-line data accessible through the web

- We used plastic dosimeters placed over whole PL500 crate
 - 1) Alanine spaghetti (flexible) placed at D1,D3
 - 2) Alanine bar D2
 - 3) RPL D2,D4
 - D1 \sim 300Gy, D2 \sim 275Gy (Both types shown same value), D3 \sim 190Gy, D4 \sim 225Gy

– Fixed dosimeters shown ~ 60 - 70 Gy

12/10/2002

Ivan Hruska EP-ATE

• Results

- Installation ready and setup running since 27th April because of limited acces in next weeks
- Beam started Thursday 23th May afternoon.
- 24th May. 5:44 morning
- CAN BUS started to show wrong voltages but good currents,
 - DVM values are OK.
- TID ~ 0.6 krad

- 24th May , Friday morning ~ 10:14
 - Dropdown of +12V channel to 4.3V
 - CAN shows decrease of current due to drop of voltage
 - positions of values from CAN are swapped 5V current in position of +12V and +12V current in position of 5V current
 - voltages read by CAN are still wrong
- 24th May 15:40
 - we are loosing power meter data
- 25th May morning ~ 10:26
 - dropdown of all 3 channels to zero

- 28th May

- revival of +12V and -12V channels back to the proper values by unknown reason
- CAN reads voltages OK and positions of current are also back
- 5V is dead.

- 29th May afternoon

- we did a power cycling of crate and all voltages are back
- CAN doesn't read +5V anyway the voltage is there by DVM
- power meter after its power recycling is back in function
- TID ~ 3.2krad

- 30th of May ~ 21:00
 - all outputs are dead

- 3rd of June afternoon - exceptional access

- after power cycling voltages were back
- but only for 3 minutes
- 12th of June
 - removal of PL500 from TCC2

- Conclusion
 - PL500 didn't survived more than 10 hours with radiation ~ 0.6krad
 - behavior has been worse and worse with increasing TID
 - CANbus steering and readout lost
 - Decisions taken to
 - return crate to manufacturer for analysis
 - stop the prepared test in PSI facility
 - Suggestions for next development sent to WIENER

- SEE test done in PSI Villingen, 1-3 Nov 2001
- Beam of protons 250MeV reduced to 60MeV with flux 2.5E7 p/cm^2/s with diameter ~ 80mm
- Tested fluence 10^11p/cm^2 => 66min / spot

- Allocated time in the beam since 1st Nov 20:00 up to 2nd Nov 2:00
- 2 MCU boards + 2 AC/DC rectifier module to irradiate
- Beam focused to CPU (80C592) & surrounding circuits

- Test setup
 - 1 Electronic load
 - Multimeter with multiplexer for output & aux voltages measurement
 - PC with GPIB bus for data storage with VB software + CANBUS
- We had support of Mr. Koester, designer from WIENER company

- Run
 - 21:11 first run (delay) with first CPU board
 - Then after 2.3E10 p/cm^2 or 3.11krads first SEE
 - typical latch-up revived by power cycling
 - lost of output voltage via CANbus only

– Test continued until 4.41E10 or 6.8krads

- then dropout of output voltage
- restarted via CANbus
- The same effect happened once again at ~5.4E10 or 8krads
- Finaly reached 1E11 and 14krads as specified

- -0.12 test of first rectifier unit
- reached 1E11 and 14krads as specified without any problems
- 1:52 test of second rectifier unit
 - immediately after start crate trip off
 - impossible to continue the test
- Test stopped at 2:15

- Conclusion
 - Confirmed results from TCC2 that MCU unit is not robust anyway WIENER did some changes to improve the tolerance
 - One rectifier module completely OK, second impossible to test with immediate SEU, reasons unknown
 - Next negotiations with company on the schedule

- Overview
 - New design description & progress
 - Results form TCC2
 - Results from radiation tests in PSI Villingen
 - Plans for future
 - Some corrections of power computings

Summer 2001 LV Box prototype
 Converts 300V DC to levels +5V,+15V,-

- LV Box prototype 2001
 - has common ground for all outputs
 - uses unified brick
 - plug-in module common for all output levels (+ &)
 - output voltage possible to set from 2.5 to 16V
 - integrated steering & measurement of in/out parameters
 - 150W maximum output power
 - steered by ELMB
 - special motherboard for ELMB
 - all components selected from rad databases
 - old components
 - low conversion frequency
 - big size of some components (inductors & capacitors)

Ivan Hruska EP-ATE

- New brick
 - After testbeam 2001 new requirements arrived
 - split off the grounds
 - minimize the number of electrolytic capacitors
 - Completely new design of brick necessary
 - isolated DC/DC converter
 - using modern components to have
 - high conversion frequency (small inductive parts)
 - high efficiency
 - but
 - unknown behavior in radiation
 - Possible use the work done on steering, cooling & mechanics for

LV box prototype

12/10/2002

Ivan Hruska EP-ATE

• New brick requirements

- 150W of maximum output power
- 200- 300V input / isolated output
- 3 standard levels with trim +/- 20% 5V, 3.3V, 15V

Radiation tolerance requirement

TILECAL LV supply radition test requirements							
					factor -		
			Test	Doses	number of		
	Worst numbers for PS		doses	obtained by	pieces to		
	region from simulation	SF	required	SEE	reach the TID		
TID	5.31E+00	70.00	371.70	2447.20	6.58	Gy per 10 years	
TID	5.31E-01	70.00	37.17	244.72	6.58	krad per 10 years	
NIEL	3.18E+11	20.00	6.36E+12	3.98E+12	0.63	n/cm ² per 10 years	
SEE	8.74E+10	20.00	1.75E+12	-		p/cm ² per 10 years	
Time of the	e SEE test in case of	5.00E+08	p/cm^2/s a	8 8	pieces is	7 min	
1.00E+11 p/cm^2 with energy 60MeV means ~14krad 1.00E+11 p/cm^2 is equivalent to 1.6n/cm^2 for NIEL							

- New brick Design approaches
 - First approach Extension of Linear Technology sample
 - Origin parameters
 - Size 50 x 50 mm
 - Output 5V/10A
 - Input 40 70V
 - uses LT1681 & LTC1698
 - efficiency 90% typically
 - Dual transistor forward converter
 - Extension to run on 200 300V input voltage
 - Extension to have measurement of in/out parameters
 - Improvement radiation critical circuits
 - Minimization of number of magnetic components

12/10/2002

- New brick Design approaches
 - Second approach Half bridge converter
 - Based on old chip UC3526
 - 200 300V input voltage
 - Secondary side & auxiliary circuits designed same as for extended LT brick not realized yet
 - Primary side with diode rectifier on secondary side prepared for radiation test
 - Advantage in comparison with first approach is that
 - can use smaller transformer core
 - but
 - needs additional 2 big sized capacitors

• New brick design - LT sample extension

- Results form TCC2
 - Test of OIA (Optically isolated amplifier)
 - used for feedback & measurements on secondary side of DC/DC converter
 - Survived 22.5krad without any change of transfer function (measured by plastic dosimeter)
 - Test stopped because of preparation for PSI

- New design radiation test PSI Villingen
 - Test of components
 - Primary side
 - 6 x IRF460 NO SEE >40krads & 2E12 p/cm^2
 - 8 x IRFP9N60 (SMD) NO SEE >40krads & 2E12 p/cm^2
 - Secondary side
 - 8 x IRF260N NO SEE >40krads & 2E12 p/cm²
 - 8 x IRF3710 (SMD) NO SEE >40krads & 2E12 p/cm²
 - Test of modules
 - Original LT brick
 - Survived ~ 40krad still running
 - Visible SEEs & voltage drift but LT chipset is bipolar
 - Chipset is possible to use

12/10/2002

Ivan Hruska EP-ATE

- New design radiation test PSI Villingen
 - Test of modules (continues)
 - Optically isolated amplifier OIA
 - Uses HCPL 7840 & LM6142
 - Up to 30krad without change of transfer linearity
 - Tested up to 40krad then few percent change of gain
 - Tested also in TCC2 area up to 20krad OK

- New design radiation test PSI Villingen
 - Test of modules (continues)
 - Half-bridge converter primary side
 - Uses UC3526 , IR2110 & 2x IRF460
 - Dead after 30krad fuse OK, unknown reasons yet

- New design based on PSI results
 - PCB design ready 8 pieces produced
 - Now in debugging procedure
 - Transformer tested $\sim 1 \text{kV}$ isolation

- Plans for near future
 - Debugging of prototype
 - Verification of basic functions (5V version)
 - Feedback tuning
 - Ripple
 - Tests of different transformer & filter setups & shunt circuits
 - Tests of 15V & 3.3V versions (different transformer)
 - Flat PCB transformer design
 - simplest manufacturing

- Plans for near future (cont.)
 - Additional radiation test
 - PSI 1-3 November 2002
 - SEE Test of MOSFETs (comments to my TMB presentation)
 - SEE Test of high side driver chip IR 2213
 - SEE test of whole brick in few orientations
 - TID 2nd December Saclay ???
 - Optocoupler for synchronous rectifying
 - » (? Not necessary if we find some already tested)
 - New linear regulators (LM117 reduction of costs \sim 40CHF/brick)
 - Crowbar (transil)
 - Bipolar latches for remote control

- Plans for near future (cont.)
 - Design changes according to results from SEE,TID & electrical tests new series of bricks
 - Design of remote control PCB based on 2001 design and new ideas how to use ELMB for power supply
 - ELMB is not reliable component in radiation SEEs
 - Idea of "electronic shielding" by using bipolar latch
 - Result should be
 - possibility of reliable steering in radiation
 - "unreliable" readout of status (in/out current, voltages etc.)

• Estimation of costs for LV system

DCDC BRICK		
	%	
DIODES	3.77	1.72
OPTOCOUPLERS	22.34	10.16
IC's	92.51	42.06
RESISTORS	2.85	1.30
CAPACITORS	29.31	13.33
TRANSFORMER & INDUCTORS	24.76	11.26
CONNECTORS	9.40	4.27
PCB	25.00	11.37
	209.94	95.45
COMPONENT MOUNTING	10.00	4.55
	219.94	100.00

POWER SUPPLY I	BOX
HEATSINK	100.00
ELMB	100.00
ELMB MOTHERBOARD	100.00
BOX	100.00
CABLES	20.00
8 x DCDC CONVERTER	1759.51
	2179.51
270 BOXES	588469

Num of pieces	Component	Price / piece	Price/brick	Pieces/ tileca	Price/Tilecal
1	1N4004	0.119	0.119	2160	257.04
2	8ETH06S	1	2	4320	4320
3	BAS21	0.113	0.339	6480	732.24
6	BAV99	0.219	1.314	12960	2838.24
			3.772		
1	6N139	1.335	1.335	2160	2883.6
3	HPCL7840	7	21	6480	45360
			22.335		
1	IR2110	8.25	8.25	2160	17820
3	L4913_1	15	45	6480	97200
3	LM6142	3.3	9.9	6480	21384
1	LT1681	8	8	2160	17280
1	LTC1698S	8.4	8.4	2160	18144
2	MFET_NPN	1.8	3.6	4320	7776
4	MFET_NPN	2.34	9.36	8640	20217.6
			92.51		
1	RESISTOR	0.35	0.35	2160	756
1	RESISTOR	0.35	0.35	2160	756
1	RESISTOR	0.03	0.03	2160	64.8
1	RESISTOR	0.03	0.03	2160	64.8
1	RESISTOR	0.03	0.03	2160	64.8
1	RESISTOR	0.03	0.03	2160	64.8
1	RESISTOR	0.03	0.03	2160	64.8
1	RESISTOR	0.03	0.03	2160	64.8

• Power & cable computing correction

	Voltage	Current	Power	Efficiency	Input power		
Hvside	5.00	1.00	5.00	85.00	5.88		
	15.00	1.00	15.00	85.00	17.65		
	-15.00	4.00	60.00	85.00	70.59		
3in1	5.00	20.00	100.00	85.00	117.65		
	-5.00	10.00	50.00	85.00	58.82		
	15.00	1.00	15.00	85.00	17.65		
Digitizer	5.00	10.00	50.00	85.00	58.82		
	3.30	10.00	33.00	85.00	38.82		
			000.00		005.00		
Output power / box			328.00		385.88		
	200.00						
	1 93						
Fingers connected to one bulk supply-daisy chained fingers	4.00						
Non used power of bulk supply [%]	22.82						
Cable resistance							
Wire crossection [mm ²]	2.50						
Resistivity of cooper	0.0220						
Length [m]	300.00						
Resistance [Ohm]	2.64						
Power loses in cable	157.24	with connected	4.00	fingers			
USA15 output power / finger	1700.77						
Total number of cables needed (no spares)	64.00						
TILECAL Power supply system efficiency profile	Power [w]	% of total input power	% loses				
USA15 input power / TILECAL	120944	100.00					
Bulk supply loses	12094		-10.00				
USA15 output power -> TILECAL in UX15	108849	90.00					
Cable loses	10064		-8.32				
Power loses in converter box	14818		-12.25				
Output power	83968	69.43			83968.00		

12/10/2002

- Conclusion
 - There is technically possible to build DC/DC converter brick which survive radiation > 30krads - more than 10 years of operation - in TILECAL finger with required parameters
 - Estimated cost of one brick should be below \$150 (220CHF)
 - Prototype ready in debugging & tuning process
 - Next radiation tests necessary
 - TID test of chipset better statistics
 - SEE/TID test of prototype & some components
 - Cable estimation did in March 2002 were corrected but conclusion is still OK