

LHC-ACR-IN in TCC2 area (2002) Irradiations of Electronic Components

Validation of switching power supplies, diode bridges, and conditioners for pressure sensors

T. Bager, J. Casas, <u>B. Palán</u>, M. Rodriguez

9 December 2002

Why tests in TCC2?

- •Radiation spectrum in TCC2 is claimed to be similar to the future LHC machine.
- Different particles (n, p+, gamma, e⁻, etc.) at various energies (0-400GeV) are present – <u>mixed radiation field.</u>
- Testing in TCC2 is suitable for final RAD-TOL components validation but does not allow a detailed study of a single damage mechanism.

Goals

- Validation of instrumentation electronics for LHC-ACR-IN
- Component selection
- Observation of annealing effects

Table of Contents

Experimental set-up: A) Commercial switching power supplies **Obtained results B)** Diode bridge rectifiers **Obtained results C) Pressure sensor conditioners Obtained results Final conclusions**

A) Commercial switching power supplies tests

- 3 modules TER, Syko (CH)
 - 1x Vin=3x110Vac, Vout= 0-125Vdc/1A, Vc=0-10V
 - 2x Vin=3x110Vac, Vout= 0-110Vdc/1A, Vc=0-5V
- LHC application: regulated V source for He heaters (50-100W)

One TER module block-scheme

LHC-ACR-IN

A) Switching power supplies set-up

LHC-ACR-IN

A) Obtained results

TER switching power supplies survive (1%FS Vout error)

1x TER01 1600Gy, degradation at Vout(max) 2x TER02 400Gy, degradation at Vout(min), see Fig. example

8

B) Diode bridge rectifiers tests

- 12 x GBU8K bridge rectifiers @ different Vin and lout
- 2 x DBI6-04 3phase rectifiers @ Vin=72Vac, lout=0.9A

B) Diode bridge rectifiers set-up

LHC-ACR-IN

B) Obtained results

Diode bridge rectifiers degradation after 3300Gy - 4.76.10¹³n/cm²

- experiment worked all the TCC2 2002 campaign without failure
- 0 400Gy : no change, all diode bridges initial behaviour
- 400 3300Gy : V_F and P_{bridge} increase due to accumulated TD
- Diodes working at higher currents 1.6 1.9A showed smaller V_F rise (see Table and Fig.)

Conclusion: preview necessary cooling fin and V drop for D bridge in the RAD-TOL design

B) GBU8K complementary test results at UCM Madrid

- I_s and R_s measurements of each diode in GBU8K (5 samples)
- total dose 1435Gy, neutron flux max 8.04.10¹³ n/cm²

C) Pressure sensor conditioners

Max drift required: ±0.2%FS

Qty	Model	Company	<u>Init.Drift(%FS)*</u>	Туре	
3x	9243	MTS (CH)	±0.09%	dumb	*temp. change
3 x	SCM90KA	Soclair(CH)	±0.17%	dumb	of 5°C, 140hours
3x	3310B	Sensorex (FR)	±0.20%	dumb	working.
3 x	AE101	HBM (D)	±0.11%	dumb	
3 x	S7DC	RDP Electrosense(US	A) ±0.15%	dumb	
3 x	PDVD404739	BAUMER (CH)	±0.07%	dumb	
2 x	2261	PR electronics (DK)	±0.20%	intelligent	

C) Pressure sensor conditioners set-up

C) Obtained results

- All pressure sensor conditioners exposed to 3300Gy TD
- Selection of conditioners based on requirement of max ±0.2%FS drift with min 100Gy usable dose range.

Summary of tested pressure sensor conditioners.

Qty	Conditioner	Usable dose range	Failure	Opinion
3x	MTS9243	500Gy	500Gy	Acceptable
3x	Soclair SCM90K	A 440Gy	2200Gy	Acceptable
3x	Sensorex 3310E	65Gy	1100Gy	Not good
3x	RDP S7DC	220Gy	2100Gy	Acceptable
3x	PDVD404739	60Gy	750Gy	Not good
2 x	PR2261*	120Gy	330Gy	Acceptable

* When power is OFF, it looses calibration data

Conclusion: four possible candidates from 7 commercial conditioners: MTS9243, Soclair SCM90KA, RDP S7DC and PR2261

Final conclusions

Commercial switching power supplies TER RAD-TOL up to 400Gy (Tcc2 doses)

Diode bridges GBU8K & DBI6

14 D bridges tested up to 3300Gy Necessary V drop and cooling fin for RAD-TOL power supply design

Pressure sensor conditioners

Four candidates from 7 tested products have sufficiently low radiation induced drift: MTS, Soclair, RDP and PR Further tests required.