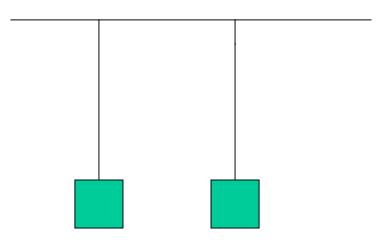
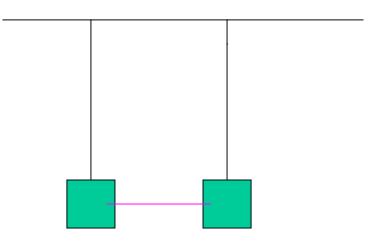

Charm Theory [Mixing, Rare Decays, CP-Violation]

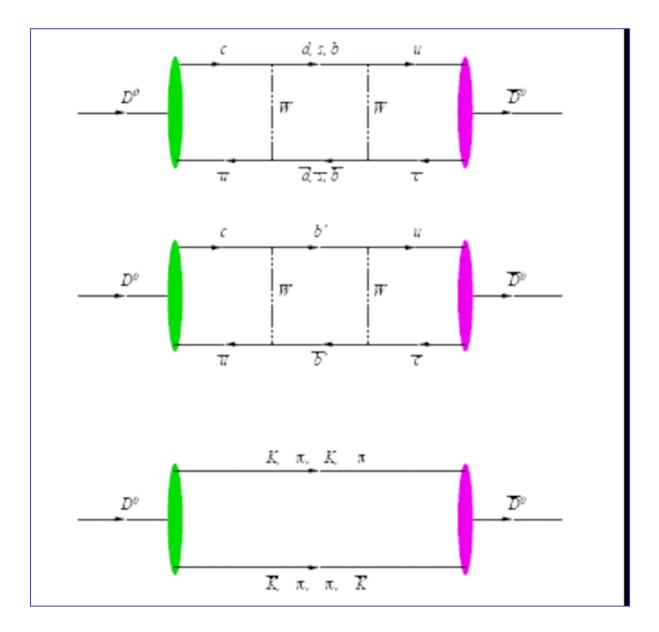

Gene Golowich Univ. of Massachusetts

Beach 2006 Univ. of Lancaster 2-8 July 2006

Math of Mixing I

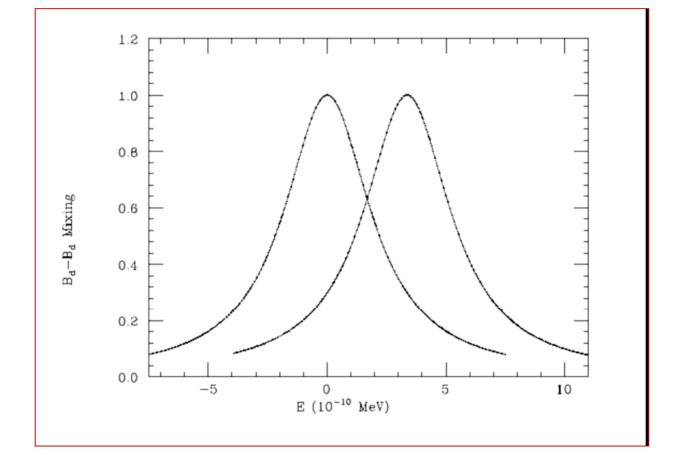

Uncoupled Pendulums

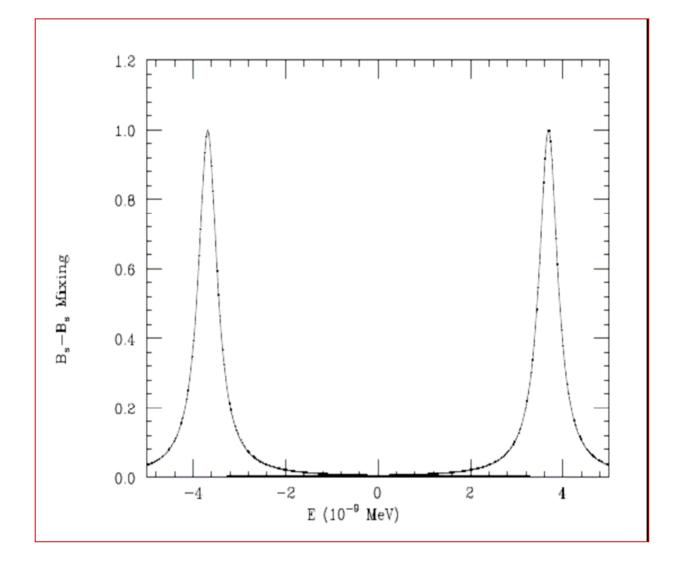
 $ω_1 = ω_2$ $Γ_1 = Γ_2$

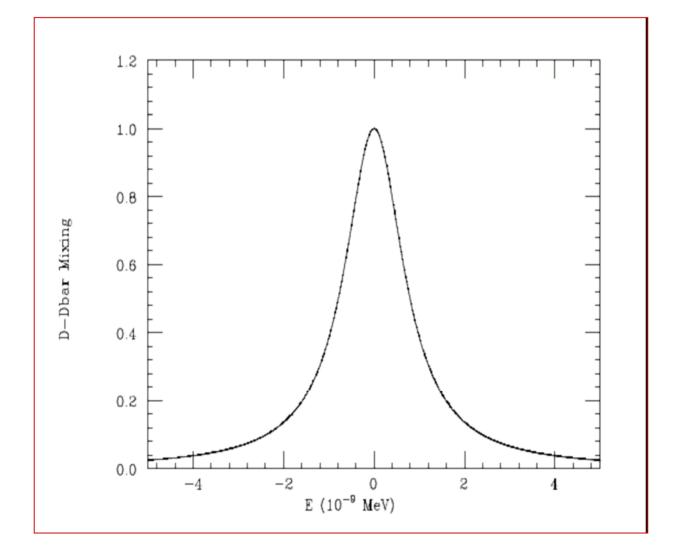

Math of Mixing II

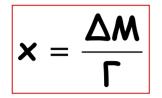
Coupled Pendulums

 $\Delta \boldsymbol{\omega} = \boldsymbol{\omega}_1 - \boldsymbol{\omega}_2 \qquad \Delta \boldsymbol{\Gamma} = \boldsymbol{\Gamma}_1 - \boldsymbol{\Gamma}_2$


The 'Coupling Spring'


Mixing of K Mesons


Mixing of B_d Mesons


Mixing of B_s Mesons

Mixing of D⁰ Mesons

Existing D⁰ Bounds

x < 0.029 (PDG)

$$\mathbf{y} \cong \frac{\mathbf{\Gamma}_1 - \mathbf{\Gamma}_2}{\mathbf{2}\mathbf{\Gamma}}$$

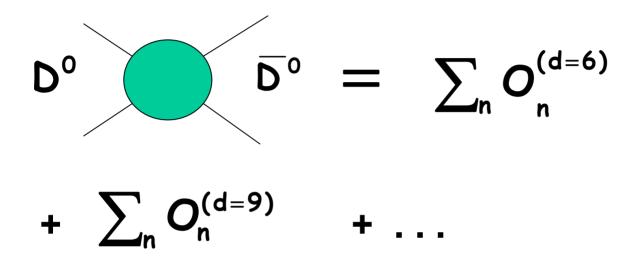
y = 0.008 ± 0.00 (PDG)

y [in %] from Decay RatesE791 $0.8 \pm 2.9 \pm 1.0$ FOCUS $3.4 \pm 1.4 \pm 0.7$ CLEO $-1.2 \pm 2.5 \pm 1.4$ BaBar $0.8 \pm 0.4 \pm 0.4$ Belle (tagged) $1.2 \pm 0.7 \pm 0.4$ Belle (untggd) $-0.5 \pm 1.0 \pm 0.8$ (Average = 0.009 ± 0.004)

[See also S. Stone (Belle), talk at FPCP 2006]

Theory of D⁰ Mixing

1] Why is D⁰ mixing so small? We know why!


2] Just how small is it? We don't know this yet

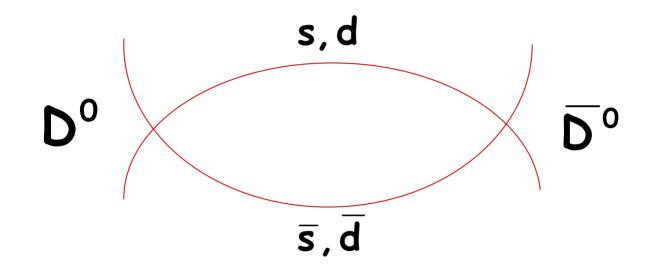
3] Theoretical Studies a) Mixing in Standard Model (SM) Quark level Hadron level

b) Mixing for New Physics (NP) Motivated by small SM effect!

Charm Mixing and the OPE*

Expand in increasing operator dimension:

D=6: Two local 4F operators


D=9: Fifteen local 6F operators

Etc

*[Georgi PL B297 (1992) 353]

Dimension Six

Ignore b quark. Sum over $s\overline{s}$, $d\overline{d}$, $s\overline{d}$ + $d\overline{s}$ intermediate states.

Expand in powers of

$$z = \frac{m_s^2}{m_c^2} \cong 0.006$$

 $\Delta\Gamma$ at d=6 (m_d=0):

Z ⁰	Z ¹	Z ²
1 2		

Total

 $\Delta\Gamma$ at d=6 (m_d=0):

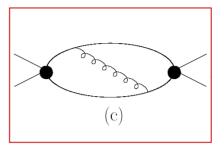
Total

	Z ⁰	z ¹	Z ²
SS	<u>1</u> 2		
dd	<u>1</u> 2		
$s\overline{d} + d\overline{s}$			

 $\Delta\Gamma$ at d=6 (m_d=0):

	Z ⁰	z ¹	Z ²
SS	1 2		
dd	<u>1</u> 2		
$s\overline{d} + d\overline{s}$	-1		
Total	0		

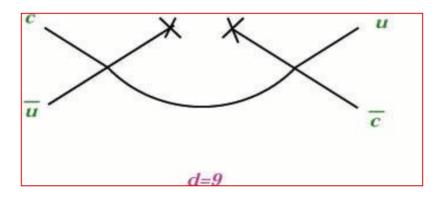
$\Delta\Gamma$ at d=6 (m_d=0):


	z ⁰	z ¹	Z ²
รร	$\frac{1}{2}$	-3z	
dd	<u>1</u> 2	0	
$s\overline{d} + d\overline{s}$	-1	3z	
Total	0	0	

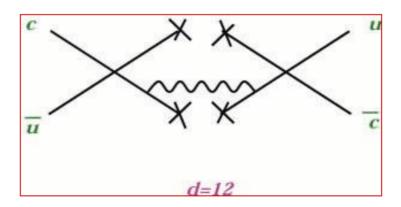
$\Delta\Gamma$ at d=6 (m_d=0):

	z ⁰	z ¹	Z ²
รร	<u>1</u> 2	-3z	3z ²
dd	<u>1</u> 2	0	0
$s\overline{d} + d\overline{s}$	-1	3z	-3z ²
Total	0	0	0

Allowing for QCD



	X	У	Comment
α <mark>s</mark> 0 (LO)	Z ²	Z ³	$\mathbf{x}^{(LO)} >> \mathbf{y}^{(LO)}$
α <mark>s</mark> 1 (NLO)	Z ²	Z ²	$\mathbf{x}^{(NLO)} > \mathbf{y}^{(NLO)}$


Main LO + NLO Result: $x \cong y \approx 10^{-6}$ Note NLO > LO (!)

Higher Terms in the OPE*

 $\mathsf{D}=9\;\left(\infty\;\mathsf{Z}^{3/2}\;\right)$

$D = 12 (\infty z)$

[Ohl, Ricciardi & Simmons NP B403 (1993) 605] [Bigi & Uraltsev, NP B592 (2001) 92] Status of Quark-level Theory

- 1. OPE: Expand in operator dimensions d = 6, 9, 12, ...
- **2. QCD:** Expand in $\frac{a_s}{4\pi}$
- 3. CKM: Expand in $z = \frac{m_s^2}{m_c^2}$

Triple Expansion!

*[Gagik, Golowich, Petrov (in progress)]

$\Delta\Gamma$ and Hadrons

$$\Delta\Gamma_{\rm D} = -2\Gamma_{12} = -\frac{1}{M_D} \operatorname{Im} \langle \overline{D}{}^0 | i \int \mathrm{d}^4 x \, T \Big\{ \mathcal{H}_w^{\Delta C=1}(x) \, \mathcal{H}_w^{\Delta C=1}(0) \Big\} | D^0 \rangle$$

Insert hadronic int. states: $\sum_{n} |n > < n|$

Require matrix elements $< n | H_w | D^0 >$

Using a model:

y ~ 10⁻³ [BLMPS PRD 51 (1995) 3478]

$\Delta\Gamma$ and Hadrons (cont)

Using data:

(a) Basic Idea

Use experimental branching ratios Divide out phase space Take square root

(b) Early Work [UMass PRD 33 (1985)178]

Choose n = P⁺P⁻

= K⁺K⁻, $\pi^+\pi^-$, K⁻ π^+ , K⁺ π^- Have K⁺K⁻ + $\pi^+\pi^- - 2 [K^-\pi^+ K^+\pi^-]^{1/2}$ SU(3) Limit: Zero via cancellation Real World: SU(3) is broken! Effect seemed large Preliminary finding: 'y large' But data uncertain in 1985 (esp. K⁺ π^-)

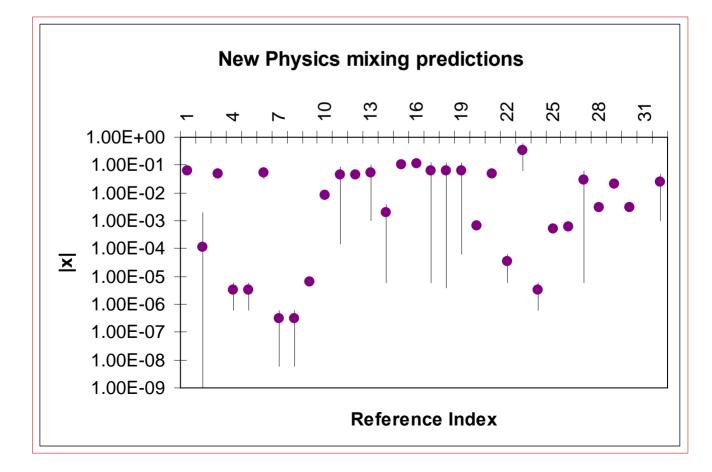
$\Delta\Gamma$ and Hadrons (cont)

(c) Recent [FGLNP PRD 69 (2004) 114021]

Complete survey: n = PP,VP,VV,3P,4P Data much improved by 2004 Analyze the various sectors Find SU(3) breaking not so large 4P sector cannot cancel (4K state absent) Conclude 'y ~ 10⁻² possible' But analysis error-bar limited ...(?)

(d) Nearby Resonance [GP PL B427 (1998) 172]

Can get enhancement if $M_D \cong M_R$ Promising idea but data inadequate


New Physics

Motivations

- It should be there!
- SM mixing is relatively small.

Problems

- Which new physics?
- Whom to believe?

Unified Analysis*

a] Spectrum of Possibilities

Extra gauge bosons

(LR models, etc)

Extra scalars

(Multi-Higgs models, etc)

Extra fermions

(Little Higgs, etc)

Extra dimensions

(Universal extra dimensions, etc)

Extra global symmetries

(SUSY, etc)

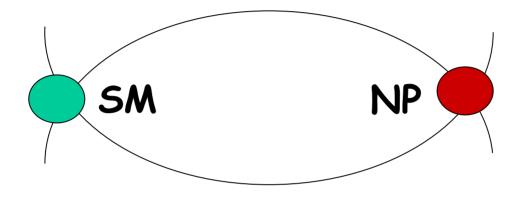
b] Low-E Description of NP

Ex: New Physics Operator

$$O_{_{NP}} = K(m_{_{c}})\overline{u}_{_{R}}\gamma^{\mu}c_{_{R}}\overline{u}_{_{R}}\gamma_{\mu}c_{_{R}}$$

Input K(M) Output K(m_c)

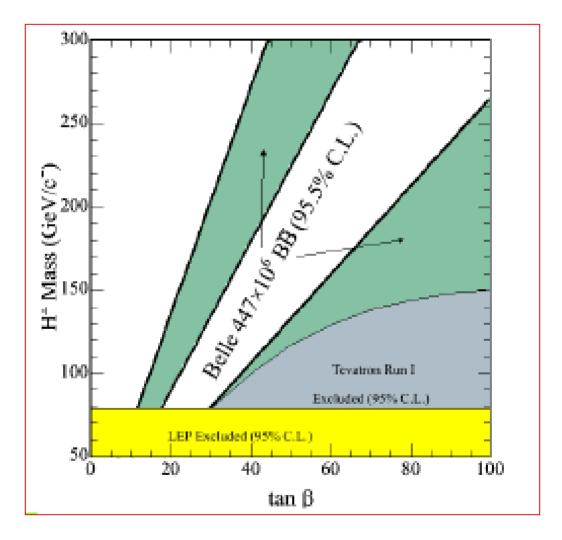
Suppose NP scale M: $m_t > M > m_b$


Let
$$r(m_1, m_2) = a_s(m_1)/a_s(m_2)$$

Then $K(m_c) = C[M, m_c]K(M)$

Where
$$C(M, m_{e}) = r^{6/23}(M, m_{e})r^{6/25}(m_{e}, m_{e})$$

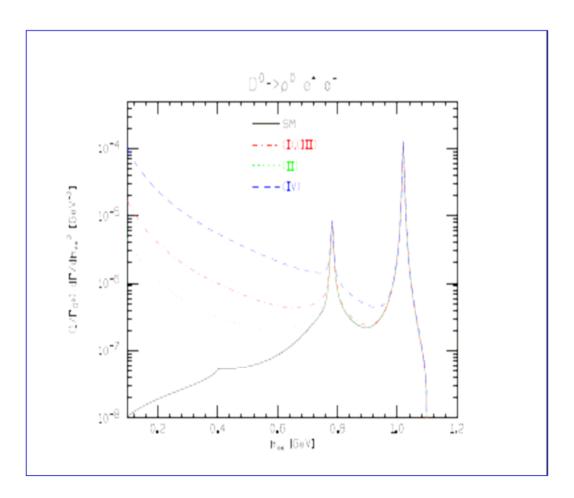
[EG, Hewett, Pakvasa, Petrov (in progress)] [CFLMSS NP B523 (1998) 501]


c] $\Delta\Gamma$ and New Physics*

NP can affect $\Delta\Gamma$! Via the $\Delta C = \pm 1$ interaction vertex. Processes like $C\overline{U} \rightarrow q_1\overline{q}_2$ Paper in preparation

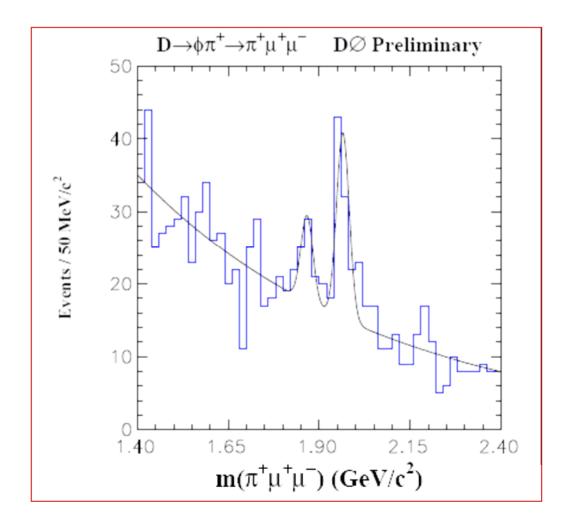
d] Constraining NP Parameters

Slow progress continues in this area. Broad, community-wide effort. Not glamorous, ultimately important!

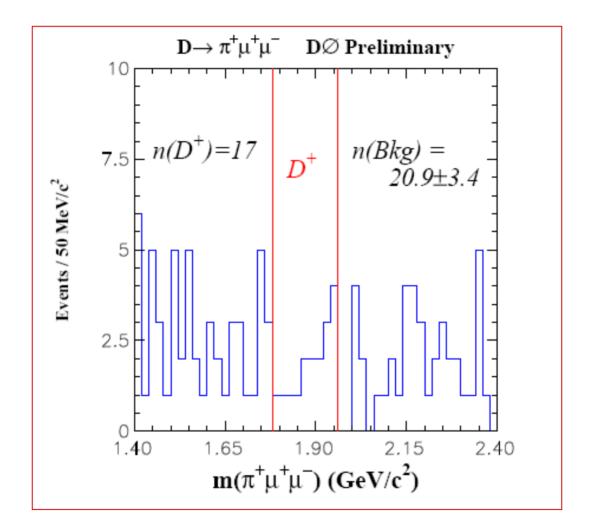


[K. Ikado (Belle), talk on $B \to \tau \nu_\tau$ at FPCP 2006]

Rare Charm Decays


Some are more interesting than others. Ex: $D \rightarrow V\gamma$ dominated by SM effects. [BGHP PR D52 (1996) 6383]

Ex: $D \rightarrow Ve^+e^-$ offers NP opportunities. [BGHP PR D66 (2002) 014009] Also see [FP PR D73 (2006) 054026]


Rare Charm Decays (cont)

Experimental studies underway. Below is a recent D0 plot involving D⁺, D_s⁺ $\rightarrow \pi^+ \phi \rightarrow \pi^+ \mu^+ \mu^-$

Rare Charm Decays (cont)

But no signal yet in the continuum. A good beginning: 'Best' bound yet

Data is 500 times above SM and 10 times above Little Higgs, but already probes RPV SUSY

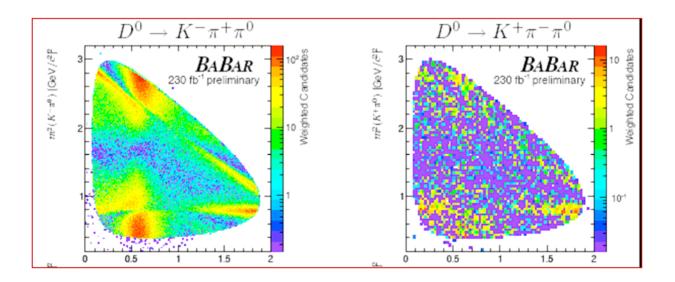
CP Violations

'Direct' CP-violations

Two-body Decay Asymmetries

$$\frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

Some Decay Asymmetries


Neutral	PDG	Charged	PDG
$D^0 \rightarrow K^+K^-$	0.005 ± 0.016	$D^{\pm} \rightarrow \phi \pi^{\pm}$	014 ± .033
$\mathrm{D}^{0} ightarrow \pi^{+}\pi^{-}$	0.021 ± 0.026	$D^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$	0.002 ± 0.011
$D^0 \rightarrow K_S^{} \pi^0$	0.001 ± 0.013	$D^{\pm} \rightarrow K^{\pm}K^{*0}$	$\textbf{-0.02}\pm0~.05$
$D^0 \rightarrow \pi^0 \pi^+ K^-$	031 ± 0 .086		

First Principles Calculation? Amplitude Phases Problematic!

Dalitz Plots

Sensitive to both Mixing and CPV. Studies by CLEO-c, Belle, BaBar

• CLEO performed an analysis of $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ -4.5% < x < 9.3% (statistically limited) -6.4% < y < 3.6%

Suggestions for future experiments

[Asner & Sun PR D73 (2006) 034024] [Petrov PR D69 (2004)111901]

Concluding Remarks

• D⁰ Mixing

Experiment:

A number of studies underway (Good!) More sensitivity required. Desired goal: To probe 0.001 < y < 0.01 Hints already seen at Belle and BaBar?

Theory: SM [Quarks]: Triple expansion (D, α_s , z) Calculation to date to NLO with D=6 Find x \cong y \cong 10⁻⁶ More to come (Difficult!)

ΔΓ **[Hadrons]**:

One theory model gives $y \cong 10^{-3}$ Phenomenology seems to allow a larger value

New Physics:

Updated theory analysis on the way

Concluding Remarks (cont)

Rare Decays

Theory: SM and NP analyses already in the literature

Experiment:

Experiments underway, esp More sensitivity needed. $D \rightarrow M \ell^+ \ell^-$

CP Violations

Experiment:

More sensitivity needed. Detection strategies being formulated: (I) Quantum correlations (Ii) Single-tagged vs Double-tagged

(iii) Time-dependent vs time-integrated