EW Penguins and New Physics

Gabriele Simi

University of Maryland

BEACH 2006

Outline

- Brief Theory introduction
- B->KII, K*II, wilson coefficients c7, c9, c10
 - Rate,
 - Forward-backward asymm.,
 - K* polarization
- Inclusive b->sgamma:
 - BF
- Photon polarization measurement
 - B->K* gamma
 - B->Ks eta/eta' gamma [to do]
 - [B->Ks Phi Gamma ? Not ready]
- b->dgamma observation by belle
 - [Vtd/Vts]

Introduction

- Why are EW penguins a sensitive probe for new physics?
 - □ Are FCNC dominated in the SM by top loop diagrams
 - The contribution from new particles that can appear in the loop is not suppressed with respect to SM
 - □ Can actually calculate several observables in SM:
 - **BF** , A_{CP} , A_{FB} , polarizations
 - In SM radiative decays the photon is polarized because of the left handed nature of the interaction

Where does new physics appear?

New physics

Can affect the value of Wilson coefficients

- □ Can introduce new operators
 - For example can change the polarization of the radiated photon (right handed currents)

The BABAR Detector

97% efficiency, 15 μ m z hit resolution (inner layers, perp. tracks) SVT: SVT+DCH: $\sigma(p_T)/p_T = 0.13 \% \oplus p_T + 0.45 \%$, $\sigma(z_0) = 65 \mu m @ 1 GeV/c$ **DIRC:** K- π separation 4.2 σ @ 3.0 GeV/c \rightarrow 3.0 σ @ 4.0 GeV/c σ_F/E = 2.3 %√E^{-1/4} ⊕ 1.9 % EMC: Gabriele Simi - BEACH 2006

2 - 8 July, Lancaster, UK

Current Belle Detector

Inclusive B->X_sγ

- Dominant contribution from radiative photon penguin
- Teoretically clean: inclusive BF computed in SM up to NLL
 - \Box ->powerful contraint on the magnitude of C₇
- A lot of background: Experimentally challenging
- Two techniques: sum of exclusive modes (Knπγ), fully inclusive

 $B[B^- → Xsy] = (3.61+0.37-0.49) \times 10-4$ (Hurth et. al., Nucl. Phys. B, 704, 56 (2005) (see also Neubert, Eur.Phys. J C40, 165 (2005); Buras et al., Nucl.Phys. B631, 219 (2002)

Exp Average= $(3.55 \pm 0.26) \cdot 10^{-3}$

Inclusive B->X_sγ:constraints on NP

Measured BF[B->X_sγ] agrees well with SM

 $\Gamma(b \to s\gamma) = \frac{G_F^2 \alpha_{em} m_b^5}{32\pi^4} |V_{ts}^* V_{tb}|^2 (|C_7|^2 + \text{corrections})$ $\Box \rightarrow |C_7| \text{ has no deviations from SM}$

 As an example take the 2 Doublet Higgs Model
->Set a limit on the m_H-tanβ plane

- Amplitude has contributions from all three penguin diagrams: C7(photon), C9(vector), C10(axial-vector)
- Exclusive decays are rare: BF ~ 10⁻⁶
- Decay rates and three body kinematic distributions are the tool to measure all three complex penguin amplitudes

B->KII and B->K*II

- Reconstruct exclusive modes K+II,KsII,K*0II,K*+II, I=e or μ
- Require strict PID
- Veto peaking background
- Suppress combinatorial using multivariate discriminants
- Extract signal yield using ML fit to M_{ES} , ΔE , M_{K^*}

Aslo Acp consistent with zero at 25% level, e/μ ratio consistent with unity

B->K*II: Angular distribution (Belle)

40

B->KII: Angular distribution (Babar)

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} = \frac{3}{4} \left(1 - F_s\right) \left(1 - \cos^2\theta^*\right) + \frac{1}{2} F_s + A_{FB} \cos\theta^*$$

 F_S,A_{FB} are allowed to be non zero even for KII
Scalar contribution from particles that replace γ/Z I the penguin can contribute to F_S, A_{FB}

B->K*II: Angular distribution (Babar)

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{K}} = \frac{3}{2} F_{L} \cos^{2}\theta_{K} + \frac{3}{4} (1 - F_{L}) (1 - \cos^{2}\theta_{K})$$

- Measure also F_L, the longitudinal polarization of the K*
- F_L =0.63^{+0.18}_{-0.19}±0.05 consistent with SM prediction
- Low q² lower limit excludes SM at 98% CL
- At high q² wrong sign C₉C₁₀ is excluded >3σ

Gabriele Simi - BEACH 2006

Inclusive b->sll: BF

- [to be completed]
- One way to allow large NP contributions still consistent with the current constraints is to reverse the sign of C7
- BF(C7=-C7_{SM})=3.3±0.3 is excluded at 3σ

	BF q ² ∈[1:6]GeV ²
BaBar 2004	1.8±0.9
Belle 2005	1.5±0.6
exp. avg	<u>1.6±0.5</u>
SM	<u>1.6±0.2</u>

Mode	BABAR (10 ⁻⁶) (2.1σ signif.)	Belle (10 ⁻⁶) (5.5σ signif.)
$B^+ \to \rho^+ \gamma$	< 1.8	$0.55^{\scriptscriptstyle +0.43+0.12}_{\scriptscriptstyle -0.37-0.11}$
$B^0 \to \rho^0 \gamma$	< 0.4	$1.17^{+0.35+0.09}_{-0.31-0.08}$
$B^0 \rightarrow \omega \gamma$	< 1.0	$0.58^{\mathrm{+0.34+0.14}}_{\mathrm{-0.31-0.10}}$

In B0-> $\rho\gamma$ big isospin violation [update from BaBar is coming soon] $\frac{B(B \to (\rho, \omega)\gamma)}{B(B \to K^*\gamma)} =$

$$\left\| \frac{V_{td}}{V_{ts}} \right\|^{2} \frac{\left(1 - m_{(\rho,\omega)}^{2} / m_{B}^{2} \right)^{3}}{\left(1 - m_{K^{*}}^{2} / m_{B}^{2} \right)^{3}} \zeta^{2} \left(1 + \Delta R \right)^{2}$$

$$\frac{V_{td}}{V_{ts}} = 0.200^{+0.026+0.038}_{-0.025-0.029}$$

1

good agreement w/CMS Δm_s

- γ is polarized in the SM -> final state is almost flavor specific
- The interference can happen only with helicity flip
- =>Tool to probe polarization: time dependent CP measurement
- SM 'naive' prediction $S \sim -2M_s/M_b^* sin(2\beta) \sim -0.04$
 - Can be up to ~0.1 (Grinstein, Grossman, Ligeti, Pirjol PRD 71, 011504(2005), Grinstein, Pirjol, hep-ph/0510104)
- Right handed current with m=m_{heavy} -> m_{heavy}/m_b enhancement [find reference]
- LRSM: SU2_LxSU2_RxU1
 - □ S(K_Sπ⁰γ)~0.5
- Doesn't need additional CPV phases

- Need to reconstruct decay vtx of the B but no tracks coming from the B decay point
- Exploit precise vertex detector and fit K_S track to the IP profile
- Validate the method using J/psi KS sample

J/psi

Inclusive B-> $X_{s}\gamma$: A_{CP} In SM A_{CP}(B->X_εγ) ~ <1% Single phase dominant □ GIM suppression **BaBar:** A_{CP}^{BaBar} (b \rightarrow sy) ~ (25 ± 50 ± 15)×10⁻³ (sum of excl. modes) **Belle:** $A_{CP}^{Belle}(b \rightarrow s\gamma) \sim (2 \pm 50 \pm 30) \times 10^{-3}$ (pseudo reconstruction) In SM $A_{CP}(B-X_{s+d}\gamma) \sim 10^{-9}$ Unitarity of CKM matrix **BaBar:** $A_{CP}^{BaBar}(b \rightarrow (s+d)\gamma) = -0.110 \pm 0.115 \pm 0.017$ [? I need find a reference for this ?]

Gabriele Simi - BEACH 2006

Rate measurements

