Facility for Antiproton and Ion Research

Guenther Rosner

FAIR

FAIR characteristics

Key Technical Features

- Rapidly cycling superconducting magnets
- Cooled beams

Primary Beams

- 10¹²/s; 1.5-2 GeV/u; ²³⁸U²⁸⁺
- Factor 100-1000 over present intensity
- 2(4)x10¹³/s 30 GeV protons
- 10¹⁰/s ²³⁸U⁹²⁺ up to 35 GeV/u
- up to 90 GeV protons

Secondary Beams

- Broad range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 in intensity over present
- Antiprotons 0 15 GeV

Storage and Cooler Rings

- Radioactive beams
- e⁻– A (or Antiproton-A) collider
- 10¹¹ stored and cooled 0.8 - 14.5 GeV antiprotons
- Polarized antiprotons (?)

Six research areas at FAIR

Accelerator chain

Highly Parallel Operation:

Guenther Rosner

Rare isotope beams (0-1.5A GeV in flight)

Low-Energy

Cave

- High-Energy Reaction Setup
- Multi-Storage Rings (CR, NESR, eA)
- Energy-Bunched Stopped Beams

Heavy ion production rate

Compressed baryonic matter (CBM)

Phase diagram of strongly interacting matter

- SPS, RHIC, LHC:
 - high temperature, low baryon density
- SIS300:
 - moderate temperature, high baryon density

Mapping the QCD phase diagram

Critical end-point:

Z. Fodor, S. Katz, hep-lat/0402006, S. Ejiri et al., hep-lat/0312006

CBM Experiment - Objectives

- In-medium modifications of hadrons
 - \square onset of chiral symmetry restoration at high ρ_B
 - □ measure: ρ , ω , ϕ \rightarrow e⁺e⁻ and open charm (D mesons)
- Strangeness in matter (strange matter?)
 - enhanced strangeness production?
 - measure: K, Λ, Σ, Ξ, Ω
- Indications for deconfinement at high ρ_B
 - anomalous charmonium suppression?
 - measure: J/ψ , D
- Critical point
 - event-by-event fluctuations
- Color superconductivity
 - precursor effects?

- Radiation hard Silicon (pixel/strip) Tracking System
 - in a magnetic dipole field
- Electron detectors: RICH & TRD & ECAL:
 - pion suppression better 10⁴
- Hadron identification: TOF-RPC
- Measurement of photons, π , η , and muons:
 - electromagnetic calorimeter (ECAL)
- High speed data acquisition and trigger system

PANDA physics programme

(Exotic) hadron spectroscopy

Charmonium spectroscopy – a high-precision testing ground for <u>confinement</u>

- Direct formation of charmonium in p^{bar}p
- Experimental issues e.g.
 - measure $h_c(1^1P_1)$ width
 - find η_c (2¹S₀)
 - measure transition rates
 - identify states above DD^{bar} threshold
- Refine confinement potential (spin dependence?)
- Challenge for lattice QCD

Search for heavy glueballs

Morningstar & Peardon, PRD60(1999)34509 Morningstar & Peardon, PRD56(1997)4043

- Heavy glueballs
 - □ flavour blind decay
 → charmed final states!
 - Probably small widths
 - only a few charmed mesons around 3-4 MeV/c² : less mixing!
- Exotic heavy glueballs: no mixing!
 m(2⁺⁻) = 4140(50)(200) MeV
 - □ m(0⁺⁻) = 4740(70)(230) MeV

What is needed experimentally?

- Gluon-rich environment
 - Proton-antiproton annihilation
- Precision resonance scan
 - Cooled antiproton beam
 - High luminosity
- All quantum numbers measured
 - Large acceptance detector
- High statistics samples
 - Large cross sections
 - Several years of beamtime

Antiproton accelerator HESR

Guenther Rosner

Charmonium Production in pp

cē	JPC	M [MeV]	Γ_{tot} [MeV]	Decay mode	σ(M)* [pb]	Events/ day**	
η_c	0^-+	2980	13.2	γγ	550	4400	
η _c	0^-+	2980	13.2	φφ	3100	24800	
η _c ' ???	0^+	3594		γγ	120	960	
J/ψ	1-	3097	0.087	$e^+e^-\!/\mu^+\mu^-$	630000	5040000	
ψ'	1-	3686	0.277	$e^+e^-\!/\mu^+\mu^-$	4480	35840	
ψ'	1-	3686	0.277	J/ψ X	17600	140800	
χ _{c0}	0++	3415	14	γγ	30	240	
χ _{c0}	0^++	3415	14	$\gamma J/\psi$	52	416	
χ _{c1}	1++	3511	0.88	$\gamma J/\psi$	3600	28800	
Xc2	2++	3556	2.0	$\gamma J/\psi$	3700	29600	
Xc2	2++	3556	2.0	γγ	220	1760	
ccg	1-	(4100)	(0.2)	(J/ψη***)	(120)	(960)	<
ccg	1-+	(4000)	???	$(J/\psi \omega,\phi,\gamma)$	(9)	(75)	

* for selected decay mode

** L = $2x10^{32}$ cm⁻²s⁻¹, 50% accelerator and detector efficiency, integrated luminosity = 8 pb⁻¹/day

*** 1% B.R. for this decay mode

PANDA production rates $(1-2 \text{ fb}^{-1}/\text{y})$

Final State	Cross section	<pre># reconstr. events/y</pre>
Meson resonance + anything	100µb	1010
$\Lambda\overline{\Lambda}$	50µb	10 ¹⁰
$\Xi\overline{\Xi}(\to_{\Lambda\Lambda}A)$	2µb	$10^8 (10^5)$
$D\overline{D}$	250nb	107
$J/\psi(\rightarrow e^+e^-,\mu^+\mu^-)$	630nb	109
$\chi_2 (\rightarrow J/\psi + \gamma)$	3.7nb	107
$\Lambda_c\overline{\Lambda}_c$	20nb	107
$\Omega_{ m c}\overline{\Omega}_{ m c}$	0.1nb	105

Common feature : Low multiplicity events, moderate particle energies For pairs : Charge symmetry condition - trigger on one, investigate the other

Timelines

- 2006: contract signed by participating countries
- 2007/8: begin of construction
 - Phase I
 - □ SIS18 upgrade, CR, NESR, SuperFRS (RIB intensity factor 100[↑])
 - □ NUSTAR, Plasma Physics (density factor 200[↑])
 - Phase II
 - SIS100, RESR, HESR (stochastic cooling)
 - D PANDA
 - Phase III
 - SIS300, HESR (electron cooling)
 - NUSTAR (RIB intensity factor 10⁴ ↑), Plasma Physics (dens. fact. 2500↑)
 - PANDA high resolution, CBM

Start of data taking (phase I, II, III) 2010-15