Electric-Dipole Moment * Searches

*(mainly neutron)

Philip Harris US University of Sussex

- Room-temperature nEDM expt: latest results
- CryoEDM: upcoming, 100x sensitivity
- Other EDM expts

Electric Dipole Moments

- EDMs are
 - P odd
 - T odd
- Complementary approach to study of CPv; probe new physics
- E $\mathbf{d}_n = \mathbf{d}_n \mathbf{\hat{s}}$
- SM predictions v. small; other models typ. 10⁶ larger...

Generating EDMs

Assumptions: $gg' \approx \alpha$, $sin(\phi) \approx 1$, $\Lambda \approx 200$ GeV Gives *u*, *d* quark EDMs $\approx 3x10^{-24} ecm$ $\approx 100 x current limit$

"SUSY CP" problem

Constraints on SUSY parameters

Pospelov & Ritz, hep-ph/0504231

BEACH 2006

SUSY, cont'd

Lebedev et al., hep-ph/0402023

P. Harris BEACH 2006

Measurement principle

Use (Ramsey) NMR on ultracold neutrons in **B**, **E** fields

nEDM measurement

- $d_n \propto \frac{\Delta \nu}{\Delta E}$
- Keep track of neutron resonant frequency
 Look for n freq changes correlated with changes in E

Mercury co-magnetometer

Compensates B drift...

nEDM measurement

New systematic

and, from Special Relativity, extra motion-induced field

$$B' = \frac{1}{\gamma} \frac{\vec{v} \times \vec{E}}{c^2}$$

University of Sussex

Geometric Phase

J. Pendlebury et al., PRA 70 032102 (2004) P. Harris, J. Pendlebury, PRA 73 014101 (2006)

Error budget (10⁻²⁶ e.cm)

Effect	Shift	Uncertainty
Statistical	0	1.51
Door cavity dipole; quadrupole fields	-1.10	0.45
Other GP dipole shifts	0	0.60
$(\mathbf{E} \times \mathbf{v})/c^2$ from translation	0	0.05
(E x v)/ c^2 from rotation	0	0.10
Light shift: direct & GP	0.35	0.08
B fluctuations	0	0.24
E forces – distortion of bottle	0	0.04
Tangential leakage currents	0	0.01
AC B fields from HV ripple	0	0.001
Hg atom EDM	0	0.05
2 nd order Exv	0	0.002
Tota	l –0.75	1.51 stat, 0.80 sys

New limit: $|d_n| < 3.0 \times 10^{-26} \text{ e.cm} (90\% \text{ CL})$ (prev. limit 6.3 x 10⁻²⁶ e.cm, PRL 82, 904 (1999))

Preprint hep-ex/0602020 provisional acceptance PRL

www.neutronedm.org

100-fold improvement in sensitivity!

CryoEDM overview

Cryogenic Ramsey chamber

University of Sussex

CryoEDM

CCLRC

University of Sussex

3. Other EDM experiments: PSI

- spallation target
- D₂O moderator
- currently testing apparatus from ILL

Other nEDM experiments: USA

BEACH 2006

Electron EDM: Berkeley

- Use unpaired e⁻ in paramagnetic atom
- Pairs of TI beams in opposite E fields
- Na beams as comagnetometer
 Final result: d_e<1.6 x 10⁻²⁷ e.cm (systematics limited)

Electron EDM measurements

Group	System	Advantages	Projected gain
D. Weiss (Penn St.)	Trapped Cs	Long coherence	~100!
D. Heinzen (Texas)	Trapped Cs	Long coherence	~100!
H. Gould (LBL)	Cs fountain	Long coherence	?
L. Hunter (Amherst)	GdIG solid	Huge S/N	100?
S. Lamoreaux (LANL) CY. Liu (Indiana)	GGG solid	Huge S/N	100?-100,000?
E. Hinds (Imperial)	YbF beam	Large Internal E	3, then 30
D. DeMille (Yale)	PbO* cell	Int.E+good S/N	30-1,000?
E. Cornell (JILA)	trapped HBr+	Int. E + long T	??
N. Shafer-Ray (Okla.)	trapped PbF	Int. E + long T	?? D. Harris
US University of Sussex (This	slide mainly from DeMille, P	ANIC '05)	BEACH 2006

Imperial College Electron EDM experiment

¹⁹⁹Hg EDM

- Optically pumped ¹⁹⁹Hg atoms precess in B, E fields, modulating absorption signal
- Dual cells remove effect of drifts in B

- Result: d(¹⁹⁹Hg) < 2.1 x 10⁻²⁸ e cm
- Provides good limit on CPv effects in nuclear forces, inc. θ_{QCD}

... and more!

- Muon EDM: from g-2 (7E-19; proposal at JPARC for ~10⁻²⁴)
- Deuterium EDM: similar principle (may reach ~10⁻²⁹ e.cm)

Tau weak dipole moment – look for CPodd observables in diff. x-sec at Z res. (6E-18 e.cm from LEP data)

Sensitivity to physics BSM depends on source of CPv

Conclusions

- New nEDM limit, 3.0 x 10⁻²⁶ e.cm
 - Tightens the constraints on beyond-SM CPv
- Systematics understood as never before
- CryoEDM coming soon 100x more sensitive
- Several new measurements starting up

Cryogenic Ramsey chamber

Ramsey method of Separated Oscillating Fields

Ramsey resonance

- "2-slit" interference pattern
- Phase gives freq offset from resonance

nEDM apparatus

Neutron EDM results (binned)

Neutron EDM results (individual runs)

Geometric Phase How to measure it

Consider

$$\mathbf{R} = \frac{\boldsymbol{V}_n}{\boldsymbol{V}_{Hg}} \cdot \frac{\boldsymbol{\gamma}_{Hg}}{\boldsymbol{\gamma}_n}$$

- Should have value 1
- R is shifted by magnetic field gradients
- Plot EDM vs measured R-1:

Geometric Phase

Geometric Phase

Results

Results

Other nEDM experiments: Mainz

Testing UCN source at TRIGA, Mainz for later installation at FRM, Munich

University of Sussex

Data being taken now. Systematics being studied.

Current status: $d_e = \pm 5 \times 10^{-28}$ e.cmExpected 2010: $d_e = \pm 5 \times 10^{-29}$ e.cm

