Recent measurements on V_{us}

After a long history the K system continiues to be a laboratory for interesting physics: flavour physics, CP violation, CKM matrix. It can be a sensitive probe for NP. Most of the recent results come from KLOE, KTEV, NA48

 Unitarity test of the CKM matrix
 KLOE, KTeV and NA48 experimental results

 \checkmark V_{us} & V_{us}/V_{ud} extraction

Neutral Kaons discovered in *Cosmic Rays* in 1947.

Unitarity test of CKM

Unitarity (or lack thereof) of CKM matrix tests existence of further quark generations and possible new physics (eg. Supersymmetry)

Most precise test of unitarity possible at present comes from 1st row:

$$|\mathbf{V}_{ud}|^2 + |\mathbf{V}_{us}|^2 + |\mathbf{V}_{ub}|^2 \sim |\mathbf{V}_{ud}|^2 + |\mathbf{V}_{us}|^2 \equiv 1 - \Delta$$

Can test if $\Delta = 0$ at 10⁻³ level:

from super-allowed nuclear β-decays: $2|V_{ud}|\delta V_{ud} = 0.0010$ from semileptonic kaon decays: $2|V_{us}|\delta V_{us} = 0.0010$

 $V_{ud}^2 = 0.9483 \pm 0.0010$ (nuclear decays) **PDG**

 $V_{us}^2 = 0.0482 \pm 0.0010$ (from e.g. K⁺ $\rightarrow \pi^0 e^+ v_e$)

 $V_{ub}^2 = 0.000011 \pm 0.000003$ (B meson decays)

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9965 \pm 0.0015$

(~ 2.3 σ deviation)

Recent measurements on V_{us} A.Antonelli (KLOE coll.) LNF-INFN – BEACH06 Lancaster July 2006

2004

V_{us} from Kl3 decays

 $|V_{us}|$ can be determined from K_{l3} partial decay widths

where *i* runs over the four modes $K^{\pm,0}(e3)$, $K^{\pm,0}(\mu 3)$

- $N_i = \frac{G_{\mu}^2 M_{Ki}^5}{192\pi^3} C_i^2$ [Ci=1(2^{-1/2}) for neutral (charged kaon decays)]
- $f_+^{K0\pi-}(0)$ form factor at zero momentum transfer: pure theory calculation (χ PT, lattice)
- $I(\lambda_{+}, \lambda_{0}, 0)$ phase space integral, S_{ew} short distance corrections (1.0232)
- $\delta^{i}_{SU(2)}$, δ_{e2p2} form factor correction due to isospin breaking (strong and electromagnetic)
- $\Delta I_i(\lambda_+,\lambda_0)$) phase space electromagnetic correction
- λ_+, λ_0 slopes (momentum dependence of the vector and scalar form factors)

2003: A new value for $BR(K_{\rho_3}^+)$

BNL E865

 $Br(K^+ \rightarrow \pi^0 e^+ \nu) = (5.13 \pm 0.02 \text{ stat} \pm 0.10 \text{ sys})\%$

PDG(<2004): (4.87±0.06)%

Gives value for V_{us} consistent with unitarity but BR is 2.7 σ above previous value.

Using 70,000 K⁺ _{e3} decays normalized to K⁺ $\rightarrow \pi^{+}\pi^{0}$, K⁺ $\rightarrow \pi^{0}\mu^{+}\nu$, K⁺ $\rightarrow \pi^{+}\pi^{0}\pi^{0}$,

> Key issue is systematic control of the Branching Ratio. > Detector not optimized for photons (designed for $\pi^+\mu^-e^+$) > *Require:* $\pi^0 \rightarrow e^+e^-\gamma$ in signal and normalization ($K^+ \rightarrow \pi^+ \pi^0$)

K_L BRs from KTeV

KTeV measures 5 K_L decay ratios $\Gamma_{e3} / \Gamma_{\mu 3}$, $\Gamma_{+-0} / \Gamma_{e3}$, $\Gamma_{000} / \Gamma_{e3}$ (sample sizes 10⁵-10⁶) $\Gamma_{+-} / \Gamma_{e3}$, $\Gamma_{00} / \Gamma_{000}$

These 6 decay modes account for 99.93% of K_L decays and the ratio can be combined to extract BR, i.e **0.9993**

$$B_{Ke3} = \frac{1}{1 + \frac{\Gamma_{K\mu3}}{\Gamma_{Ke3}} + \frac{\Gamma_{000}}{\Gamma_{Ke3}} + \frac{\Gamma_{+-0}}{\Gamma_{Ke3}} + \frac{\Gamma_{+-}}{\Gamma_{Ke3}} + \frac{\Gamma_{00}}{\Gamma_{Ke3}}}{1 + \frac{\Gamma_{\mu}}{\Gamma_{\mu}} + \frac{\Gamma_{\mu}}{\Gamma_{\mu}} + \frac{\Gamma_{\mu}}{\Gamma_{\mu}} + \frac{\Gamma_{\mu}}{\Gamma_{\mu}}}{1 + \frac{\Gamma_{\mu}}{\Gamma_{\mu}} + \frac{\Gamma_{\mu}}{\Gamma_{\mu}} + \frac{\Gamma_{\mu}}{\Gamma_{\mu}} + \frac{\Gamma_{\mu}}{\Gamma_{\mu}}}{1 + \frac{\Gamma_{\mu}}{\Gamma_{\mu}} + \frac{\Gamma_{\mu}}{\Gamma_{\mu}}$$

$BR(K_{Le3})$ from NA48

• They also have a **preliminary** measurement of **BR(K_L \rightarrow 3\pi^0) extracted from** BR(K_L \rightarrow 3 π^0)/BR(K_S \rightarrow 2 π^0) BR(K_L \rightarrow 3 π^0) = 0.1966± 0.0006± 0.0033 (PDG value for BR(K_S \rightarrow 2 π^0)) Compare BR(K_L \rightarrow 3 π^0) = 0.1969 ± 0.0026 from KLOE-KTeV average

KLOE: Tagging of neutral kaons

 K_S tagged by K_L interaction in EmCEfficiency ~ 30% K_S momentum resolution ~ 1 MeV

"crash"

 ~ 22 (TOF)

 $Recent \ measurements \ on \ V_{us} \ \ \text{A.Antonelli} \ (\text{KLOE coll.}) \ \text{LNF-INFN} - \text{BEACH06} \ \text{Lancaster July 2006}$

KLOE:Measurement of K_L BR's

Tagging → Precisely measure absolute branching ratios

Dominant K_L branching ratios

Absolute BR mmts to 0.5-1% using K_L beam tagged by $K_S # \pi^+\pi^-$

328 pb⁻¹ '01 + '02 data

13 \otimes 10⁶ K_L 's for counting (25%) 75% used to evaluate efficiencies

BR's to $\pi e \nu$, $\pi \mu \nu$, and $\pi^+ \pi^- \pi^0$:

- K_L vertex reconstructed in DC
- PID using decay kinematics
- Fit with MC spectra including radiative processes and optimized EmC response to $\mu/\pi/K_L$

BR to $\pi^0\pi^0\pi^0$:

- Photon vertex reconstructed by TOF using EmC (¤ 3 clusters)
- $M_{rec} = 99\%$, background < 1%

KLOE: BR results

Errors on absolute BR's dominated by error on \blacklozenge_L

 \mathbf{K}_{L} FV acceptance depends on the lifetime :

 $\epsilon_{_{FV_{\alpha e}}}$ $\epsilon_{_{\rm FV}}$ dependence setting Σ BR(K_L \rightarrow X) =1 on $\lambda(K_r)$ independent measurement of $\tau_{_{\rm KL}}$ 0.5 0.4 0.3 $\tau_{\rm KI} = 50.72 \pm 0.17 \pm 0.33$ ns 0.2 spherical FV (35<R<150 cm) 0.1 no boost, ISR, NI .. BR(K_L $\rightarrow \pi e \nu(\gamma)$) = 0.4007 ± 0.0006 ± 0.0014 150 200 250 exp(-35/x)-exp(-150/x) $\lambda(K_{r})$ (cm) BR($K_{L} \rightarrow \pi \mu \nu(\gamma)$) = 0.2698 ± 0.0006 ± 0.0014 Systematics evaluated including $BR(K_{I} \rightarrow 3\pi^{0}) = 0.1997 \pm 0.0005 \pm 0.0019$ full error matrix from all sources. Publisher publication pall BR(K_L $\rightarrow \pi^+\pi^-\pi^0(\gamma)$) = 0.1263 ± 0.0005 ± 0.0011

BR comparison

KLOE: K_L lifetime from $K_L \rightarrow 3\pi^0$

x 10²

• Large acceptance for K_L decays ~0.4 $\lambda \Rightarrow$ high statistical accuracy • K_L momentum measured from

 $K_s \rightarrow \pi^+ \pi^-$

• $K_L \rightarrow 3\pi^0$ efficiency >99% little variation along the K_L path

 τ (PDG) (fit) = (51.7 ± 0.4) ns

• $K_L \rightarrow \pi^+ \pi^- \pi^0$ as a control sample for the estimate of efficiency, resolution and time scale

Average with result from K_L BR's: $\tau_L = 50.84 \pm 0.23$ ns

KLOE $K_S \rightarrow \pi e \nu$ *decays*

 Kinematic closure: use K_L to obtain K_S momentum P_K and test for presence of neutrino:

$$\mathbf{E}_{\mathrm{miss}} = \sqrt{\mathbf{M}_{\mathrm{K}}^{2} + \mathbf{P}_{\mathrm{K}}^{2} - \mathbf{E}_{\pi} - \mathbf{E}_{\mathrm{e}}}$$

$$\mathbf{P}_{\mathrm{miss}} = |\mathbf{P}_{\mathbf{K}} - \mathbf{P}_{\pi} - \mathbf{P}_{\mathbf{e}}|$$

- Further rejection of $K_S \rightarrow \pi\pi$ background from TOF identification
- Obtain number of signal events from a constrained likelihood fit to multiple data distributions
- Use BR($K_S \rightarrow \pi\pi$) to calculate BR($K_S \rightarrow \pi e\nu$)

KLOE: $K_S \rightarrow \pi e \nu$ decays: Results

unique to KLOE

 $BR(K_{S} \rightarrow \pi^{-}e^{+}\nu) = (3.528 \pm 0.057_{stat} \pm 0.027_{syst}) \ 10^{-4}$ $BR(K_{S} \rightarrow \pi^{+}e^{-}\nu) = (3.517 \pm 0.051_{stat} \pm 0.029_{syst}) \ 10^{-4}$ $BR(K_{S} \rightarrow \pi e\nu) = (7.046 \pm 0.077_{stat} \pm 0.049_{syst}) \ 10^{-4}$

KLOE '02, *Phys.Lett.B535*, 17 pb⁻¹ : $(6.91 \pm 0.34_{stat} \pm 0.15_{syst})$ 10⁻⁴

 $A_{S} = (1.5 \pm 9.6_{stat} \pm 2.9_{syst}) \times 10^{-3}$ with 2.5 fb⁻¹ KLOE can measure A_S to 3×10^{-3} compare to results for A_L : KTeV (3.322±0.058±0.047)×10⁻³ NA48 (3.317±0.070±0.072)×10⁻³

PLB 636(2006)]

linear form factor slope $\lambda_{+} = (33.9 \pm 4.1) \times 10^{-3}$

compatible with the linear slope obtained from K_L semileptonic decays

KLOE: Charged Kaon

K[±] beam tagged from K[±] → $\pi^{\pm}\pi^{0}$, $\mu^{\pm}\nu$ (85% of K[±] decays) $\cong 1.5 \times 10^{6} \text{ K}^{+}\text{K}^{-} \text{ evts/pb}^{-1}$ two-body decays identified as peaks in the momentum spectrum of secondary tracks in the kaon rest frame $\rightarrow P^*(\mathbf{m}_{\pi})$

$$\epsilon_{tag} \cong 36 \% \implies \cong 3.4 \times 10^5 \text{ } \mu \text{v} \text{ tags/pb}^{-1}$$

KLOE: K[±] *lifetime*

- \bullet two methods to measure τ_{\pm} allow cross checks on the systematic error
- common to both methods

KLOE: $K^{\pm}_{e3,\mu3}$ semileptonic BR

- ✓ 4 independent tag: $K^+\mu^2$, $K^+\pi^2$, $K^-\mu^2$, and $K^-\pi^2$; keep the systematic effects due to the tag selection under control.
- ✓ kinematical cuts to reject non-semileptonic decays, residual background is about 1.5% of the selected K[±]13 sample
- ✓ Obtain number of signal events from a constrained likelihood fit of a m² data distributions from ToF measurements.
 - Perform the **BR measurement on each tag sample** separately normalizing to tag counts in the same data set.

KLOE 2005 preliminary:

$$BR(K_{e3}^{\pm}) = (5.047 \pm 0.019_{Stat} \pm 0.039_{Syst}) \times 10^{-2}$$
$$BR(K_{\mu3}^{\pm}) = (3.310 \pm 0.016_{Stat} \pm 0.045_{Syst}) \times 10^{-2}$$

K^{\pm}_{e3} from NA48 and ISTRA

NA48 preliminary:

Measurement of BR($K^{\pm} \rightarrow \pi^{0} ev$)/BR($K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$) Using PDG04 value for BR($K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$) BR($K^{\pm} \rightarrow \pi^{0} ev$) = (5.14±0.02_{stat} ±0.06_{syst})% Measurement of R_{µe} = BR($K^{\pm} \rightarrow \pi^{0} \mu v$)/BR($K^{\pm} \rightarrow \pi^{0} ev$) R_{µe} = 0.6749 ± 0.0035

ISTRA+ preliminary:

Measurement of BR(K⁻ $\rightarrow \pi^0 ev$)/BR(K⁻ $\rightarrow \pi^-\pi^0$)

BR(K $\rightarrow \pi^0 ev$) = (5.22±0.11)%

Note: Both values depend on BR($K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$)

Post-PDG'04 results for Ke3 (E865) and Kµ2 (KLOE) decrease BR($K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$) by ~1% from global fit to K^{\pm} BRs

Form Factor

$$\langle \pi | J_{H,V}^{\alpha} | K \rangle = f(0) \left((P+p)^{\alpha} \tilde{f}_{+}(t) + (P-p)^{\alpha} \tilde{f}_{-}(t) \right)$$

$$\widetilde{f_{0}}(t) = \widetilde{f}_{+}(t) + t/(m^{2}_{\pi^{+}} + m^{2}_{K}) \widetilde{f}_{-}(t)$$

$$\widetilde{f_{-}(t)} = 1 + \lambda'_{+,0} t/m_{\pi^{+}} + 1/2 \lambda''_{+,0} (t/m_{\pi^{+}})^{2}$$

$$K = \frac{p}{K}$$

 $I(\lambda_{+}, \lambda_{0}, 0)$ phase space integral needed for extracting Vus is a function of FF slopes

e.g. for Ke3,
$$I_{e3} = 0.56340158 + 1.9470583\lambda' + 2.6907652(\lambda'^2 + \lambda'') + 9.2753527\lambda'\lambda'' + 9.1097871\lambda''^2$$

Fit of *t*-spectrum with different hypotheses on form factor $f_{+}(t)/f_{+}(0)$:

Quadratic Polar $f(t) = 1 + \lambda' \frac{t}{m^2} + \frac{\lambda''}{2} \frac{t^2}{m^4} \dots$ or $\frac{M_V^2}{M_V^2 - t}$, implying $\lambda' = \left(\frac{m}{M_V}\right) 2$, $\lambda'' = 2\lambda'^2$

KLOE: Form Factor

- 328 pb⁻¹, $2 \times 10^6 K_{Le3}$ decays
- Kinematic cuts + TOF PID to reduce background ($\sim 0.7\%$ final contamination)
- Momentum transfer **t** measured from π and K_L momenta: $\sigma_t/m_{\pi}^2 \sim 0.3$
- separate measurement for each charge state ($e^+\pi^-, \pi^+e^-$) to check systematics

Form Factor comparison

Form Factor comparison

V_{us} from KLOE BR

KLOE: $BR(K^+ \rightarrow \mu^+ \nu(\gamma))$

Combining the experimental value of $\Gamma(K \to \mu \nu(\gamma)) / \Gamma(\pi \to \mu \nu(\gamma))$ with the ratio f_K / f_{π} obtained from lattice calculations we can extract $|V_{us}| / |V_{ud}|$ (Marciano hep-ph/0406324) $\Gamma(K \to \mu \nu(\gamma)) / \Gamma(\pi \to \mu \nu(\gamma)) \propto |V_{us}|^2 / |V_{ud}|^2 f_K^2 / f_{\pi}^2$

Selection

- Tag from K⁻→μ⁻ν
- 2002 data ~175 pb⁻¹ (2/3 used for efficiency

• Event counting performed by fitting the P^{*} distribution with signal and background shapes

[PLB 632 (2006)] $BR(K^+ \rightarrow \mu^+ \nu(\gamma)) =$

$$0.6366 \pm 0.0009_{stat.} \pm 0.0015_{syst}$$

PDG fit = 0.6343 \pm 0.0017

 $Recent \ measurements \ on \ V_{us} \ \ \text{A.Antonelli} \ (\text{KLOE coll.}) \ \text{LNF-INFN} - \text{BEACH06} \ \ \text{Lancaster July 2006}$

 $V_{us} - V_{ud} plane$

• Using $f_K / f_{\pi} = 1.198(3)(^{+16}_{-5})$ from MILC Coll. (2005) and **KLOE BR(K⁺ \rightarrow \mu^+ \nu)** we get $V_{us} / V_{ud} = 0.2294 \pm 0.0026$

Conclusions and Perspectives

2 the CKM matrix appears to be unitary within $\sim 1\sigma$

 V_{us} still only known to about 1%
 KLOE and NA48 will have soon final results on charged kaon Branching Ratios and slopes

> KLOE will have soon preliminary results on λ_0 fitting the K_{Lµ3} spectrum

➤ Using the full data sample (2.4 fb⁻¹) KLOE will update the BR measurement and will refine the slopes measurements improving by a factor 2 the statistical accuracy

 \succ improvement for f₊(0) expected from lattice calculations

NA48, KTEV,ISTRA: Form Factor

KTeV [PRD 70 (2004)]

 $f_+(t)$ is consistent for the two decay modes \rightarrow

 $\lambda_0 \sim 5$ times more precise than PDG \rightarrow Pole model

 $\lambda' = (20.64 \pm 1.75) \times 10^{-3}$ $\lambda''_{+} = (3.20 \pm 0.69) \times 10^{-3} 4\sigma$ $\lambda_{0} = (13.72 \pm 1.31) \times 10^{-3}$ $M_{V} = (882.32 \pm 6.54) \text{ MeV /c}^{2}$ $M_{s} = (1173.80 \pm 39.47) \text{ MeV/c}^{2}$

 λ''_{+} results in a 1% reduction of the phase space integral corresponding to an increase of 0.5% for V_{us} NA48 (HEP2005) 289

 K_{e3}^{0} $\lambda'_{+} = (28.8 \pm 1.2) \times 10^{-3}$ no evidence for quadratic term

 Pole model
 $M_{V} = (859 \pm 18) \text{ MeV /c}^{2}$
 $K_{\mu3}^{0}$ $\lambda'_{+} = (26.0 \pm 1.2) \times 10^{-3}$
 $\lambda_{0} = (12.0 \pm 1.7) \times 10^{-3}$

 ISTRA + [PLB 581 (2004), PLB 589 (2004)]

 K_{-e3}^{0}
 $\lambda'_{+} = (24.85 \pm 1.66) \times 10^{-3}$
 K_{-e3}^{0}
 $\lambda'_{+} = (1.92 \pm 0.94) \times 10^{-3}$
 $\lambda'_{-e} = (1.92 \pm 0.94) \times 10^{-3}$
 $\lambda'_{-e} = fi(0)(1 + \lambda'_{-1} t/m^{2}_{-m^{+}} + \lambda''_{-1} t^{2}/2m^{4}_{-m^{+}}) *$ Istra values are corrected by $m^{2}_{-m^{+}}/m^{2}_{-m^{-}}$

SU(2) and em corrections

	$\left - \delta^{\kappa}_{SU(2)}(\%) ight $	$\delta^{\kappa_\ell}_{ m sim}(\%)$	
		3-body	full
K_{e3}^{+}	2.31 ± 0.22	-0.35 ± 0.16	-0.10 ± 0.16
$K^0_{\epsilon 3}$	0	$+0.30 \pm 0.10$	$+0.55 \pm 0.10$
$K_{\mu 3}^{+}$	$ 2.31 \pm 0.22 $	-0.05 ± 0.20	$\pm 0.20 \pm 0.20$
$K^{0}_{\mu 3}$	0	$+0.55 \pm 0.20$	$+0.80 \pm 0.20$

KLOE: Absolute BR's results

• Absolute BR results with ($\tau_{\rm KL} = 51.54 \pm 0.44$ ns):

3/4 of 2001-2002 data has been used for efficiency evaluation and 330 pb^{-1} 1/4 for BR measurement corresponding to 13×10^6 tagged K_L.2001-2002

$$BR(K_{L} \rightarrow \pi ev(\gamma)) = 0.4049 \pm 0.0010 \pm 0.0031 \qquad \sim 8 \times 10^{5} \text{ events}$$

$$BR(K_{L} \rightarrow \pi \mu v(\gamma)) = 0.2726 \pm 0.0008 \pm 0.0022 \qquad \sim 5 \times 10^{5} \text{ events}$$

$$BR(K_{L} \rightarrow 3\pi^{0}) = 0.2018 \pm 0.0004 \pm 0.0026 \qquad \sim 7 \times 10^{5} \text{ events}$$

$$BR(K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0}(\gamma)) = 0.1276 \pm 0.0006 \pm 0.0016 \qquad \sim 2 \times 10^{5} \text{ events}$$