B Mixing and Lifetimes ... with a Lattice Perspective

JM Flynn



School of Physics & Astronomy University of Southampton

BEACH 2006 Lancaster University, 2–8 July 2006 Mixing and Decay

Mixing

Lifetime ratios

Lifetime differences

**CP-violation parameters** 

### Mixing and Decay

Effective Hamiltonian matrix for  $|B\rangle$ ,  $|\bar{B}\rangle$  system:

$$\begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{11} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{11} \end{pmatrix}$$

Physical eigenstates:

$$|B_H\rangle = p|B\rangle + q|\bar{B}\rangle$$
  
 $|B_L\rangle = p|B\rangle - q|\bar{B}\rangle$  with  $|p|^2 + |q|^2 = 1$ 

Probe off-diagonal entries ( $\Delta B = 2$ ) with

Mass difference $\Delta m = M_H - M_L \approx 2|M_{12}|$ Lifetime difference $\Delta \Gamma = \Gamma_L - \Gamma_H \approx 2|\Gamma_{12}|\cos \phi$ CP asymmetry $\left| \frac{q}{p} \right| - 1 \approx \frac{1}{2} \text{Im} \frac{\Gamma_{21}}{M_{21}}$ 

# Mixing

$$M_{12}^{q} = \frac{G_{F}^{2}}{12\pi^{2}} (V_{tq}^{*} V_{tb})^{2} M_{W}^{2} S_{0}(x_{t}) \eta_{B} B_{B_{q}} f_{B_{q}}^{2} M_{B_{q}}$$

with  $\Delta B = 2$  matrix element parametrised by

$$\langle \bar{B}_q | (\bar{b}\gamma^{\mu}Lq) (\bar{b}\gamma_{\mu}Lq) | B_q 
angle = rac{8}{3} B_{B_q} f_{B_q}^2 M_{B_q}$$

- $f_B \sqrt{B}$  relevant quantity for mixing
- Quantities with least-correlated errors in LQCD are

$$f_{B_s}\sqrt{B_{B_s}}$$
 and  $\xi \equiv \frac{f_{B_s}\sqrt{B_{B_s}}}{f_{B_d}\sqrt{B_{B_d}}}$ 

ξ most sensitive to chiral extrapolation (Kronfeld–Ryan 2002), other errors tend to cancel in ratio

### Mixing: Chiral Extrapolation



Plot of  $\Phi(B_s)/\Phi(B_q) = f_{B_s} \sqrt{m_{B_s}}/f_{B_q} \sqrt{m_{B_q}}$  (HPQCD results, shown in Wingate hep-ph/0604254)

# f<sub>Bs</sub> History

1 1 . . . .  $N_f = 0$ Ali-Khan et al 1998 **JLQCD 1999** CPPACS 2001 JI OCD 1998 El Khadra et al 1998 MILC 1998 CPPACS 2000 **MILC 2002** Becirevic et al 1998 **UKQCD 2000** Lellouch-Lin 2000 Becirevic et al 2000 de Divitiis et al 2003 AI PHA 2003  $N_f = 2$ Collins et al 1999 CPPACS 2000 CPPACS 2001 **MILC 2002 JLQCD 2003**  $N_f = 2 + 1$ **HPQCD 2004** 

160

200

240

280 f<sub>Bs</sub>/MeV

Grey band, Hashimoto, ICHEP 2004:

 $f_{B_s} = 230 \pm 30 \,\mathrm{MeV}$ 

HPQCD (Wingate et al, prl92 (2004) 162001):

 $f_{B_s} = 260 \pm 29 \,\mathrm{MeV}$ 

# Mixing

- ► B<sub>q</sub> results not yet available from staggered fermions
- Rather than combine f<sub>B<sub>s</sub></sub> and B<sub>B<sub>s</sub></sub> from different formalisms, I would stick with the averages:

$$f_{B_{\rm s}} = 230(30)\,{
m MeV}$$
  
 $f_{B_{\rm s}}\sqrt{\hat{B}_{B_{\rm s}}} = 262(35)\,{
m MeV}$  Hashimoto, ICHEP2004  
 $\xi = 1.23(6)$ 

The combination is done in Okamoto Lattice2005, Mackenzie FPCP2006, Wingate hep-ph/0604254:

• 
$$f_{B_s}$$
 and  $f_{B_s} \sqrt{\hat{B}_{B_s}}$  go up by  $\approx 30 \, {\rm MeV}$ 

•  $\xi$  not much affected but quoted error less  $[1.21 \binom{+5}{-4}]$ 

### Lifetime Ratios: Experiment

#### HFAG hep-ex/0603003

$$\frac{\tau(B^+)}{\tau(B^0)} = 1.076 \pm 0.008 \,\mathrm{ps}$$
$$\frac{\tau(B_s)}{\tau(B^0)} = 0.914 \pm 0.030 \,\mathrm{ps}$$
$$\frac{\tau(\Lambda_b)}{\tau(B^0)} = 0.844 \pm 0.043 \,\mathrm{ps}$$

But using van Kooten, FPCP2006, hep-ex/0606005 for  $\tau(B_s)$ :

$$\frac{\tau(B_s)}{\tau(B^0)} = 0.957 \pm 0.020 \,\mathrm{ps}$$

### Lifetime of hadron $H_b$ containing a *b*-quark

$$\Gamma(H_b) = \frac{1}{m_{H_b}} \ln \langle H_b | \mathcal{T} | H_b \rangle$$

where

$$\mathcal{T} = i \int d^4 x \, \mathsf{T} \Big[ \mathcal{H}^{|\Delta B|=1}(x) \mathcal{H}^{|\Delta B|=1}(0) \Big]$$

- ► Effective Hamiltonian H<sup>|ΔB|=1</sup> known to NLO Buchalla et al, Ciuchini et al and NNLO Gorbahn–Haisch
- Heavy Quark Expansion: large energy release in *b* decay allows OPE of  $\mathcal{T}$  as series of local operators of increasing dimension with increasing inverse powers of  $m_b$  and calculable coefficients (containing CKM factors)

$$\Gamma(H_b) = \sum_k rac{c_k(\mu) \langle H_b | O_k(\mu) | H_b 
angle}{m_b^k}$$

Neubert-Sachrajda, 1996









Neubert-Sachrajda, 1996



- ► O(1):  $\overline{bb}$  free quark decay  $\langle \overline{b}b \rangle \stackrel{\text{HQET}}{=} 1 - \frac{\mu_{\pi}^2 - \mu_G^2}{2m_b^2} + O(m_b^{-3})$
- $O(1/m_b)$ : no contribution

Neubert-Sachrajda, 1996



- ► O(1):  $\overline{bb}$  free quark decay  $\langle \overline{bb} \rangle \stackrel{\text{HQET}}{=} 1 - \frac{\mu_{\pi}^2 - \mu_G^2}{2m_b^2} + O(m_b^{-3})$
- $O(1/m_b)$ : no contribution •  $O(1/m_b^2)$ :  $\overline{bg_s \sigma \cdot G b}$ chromomagnetic operator  $\langle \overline{bg_s \sigma \cdot G b} \rangle \stackrel{\text{HQET}}{=} 2\mu_G^2 + O(m_b^{-1})$

Neubert-Sachrajda, 1996



- ► O(1):  $\overline{bb}$  free quark decay  $\langle \overline{bb} \rangle \stackrel{\text{HQET}}{=} 1 - \frac{\mu_{\pi}^2 - \mu_G^2}{2m_b^2} + O(m_b^{-3})$
- $O(1/m_b)$ : no contribution
- $O(1/m_b^2)$ :  $\overline{b}g_s \sigma \cdot G b$ chromomagnetic operator  $\langle \overline{b}g_s \sigma \cdot G b \rangle \stackrel{\text{HQET}}{=} 2\mu_G^2 + O(m_b^{-1})$ •  $O(1/m_b^3)$ :  $\overline{b} \Gamma q \overline{q} \Gamma b$  spectator effects (1-loop  $\rightarrow 16\pi^2$  factor):

four  $\Delta B=0$  4-quark operators

Neubert-Sachrajda, 1996



- ► O(1):  $\overline{bb}$  free quark decay  $\langle \overline{bb} \rangle \stackrel{\text{HQET}}{=} 1 - \frac{\mu_{\pi}^2 - \mu_G^2}{2m_b^2} + O(m_b^{-3})$
- $O(1/m_b)$ : no contribution
- ►  $O(1/m_b^2)$ :  $\overline{b}g_s \sigma \cdot G b$ chromomagnetic operator  $\langle \overline{b}g_s \sigma \cdot G b \rangle \stackrel{\text{HQET}}{=} 2\mu_G^2 + O(m_b^{-1})$
- ►  $O(1/m_b^3)$ :  $\overline{b} \Gamma q \overline{q} \Gamma b$  spectator effects (1-loop  $\rightarrow 16\pi^2$  factor): four  $\Delta B=0$  4-quark operators
- $O(1/m_b^3)$  spectator effects dominate lifetime differences
- ... if matrix elements of 4-quark operators not too small

### Lifetime Ratios

NLO QCD corrections to Wilson coefficients

Beneke-Buchalla-Greub-Lenz-Nierste, 2002

Franco-Lubicz-Mescia-Tarantino, 2002

 $\rightarrow$  brings in penguin operators at  $O(1/m_b^3)$ 

Matrix elements from LQCD

Di Pierro–Sachrajda, Di Pierro–Michael–Sachrajda, 1998/99 APE, Becirevic et al, 2001

 Leading O(1/m<sup>4</sup><sub>b</sub>) spectator contributions from eight dimension-7 4-quark operators

Gabbiani–Onishchenko–Petrov, 2004

 $\rightarrow$  yet more matrix elements . . . estimated from vacuum insertion (*B*-mesons) or quark-diquark model (baryon)

## Lattice Matrix Elements



### Lattice Matrix Elements



Penguin contributions and "eye" diagrams not computed. Tend to cancel for  $\tau(B^+)/\tau(B_d)$  and (less so) for  $\tau(B_s)/\tau(B_d)$  but not for  $\tau(\Lambda_b)/\tau(B_d)$ 

### Matrix elements: Leading operators

$$\begin{array}{ll} O_1^q = (\bar{b}\gamma^{\mu}Lq)(\bar{q}\gamma_{\mu}Lb) & O_3^q = (\bar{b}\gamma^{\mu}t^aLq)(\bar{q}\gamma_{\mu}Lt^ab) \\ O_2^q = (\bar{b}Lq)(\bar{q}Lb) & O_4^q = (\bar{b}Lt^aq)(\bar{q}Lt^ab) \end{array}$$

Parametrise:

$$\begin{split} \frac{\langle B_q | O_{1,2}^q | B_q \rangle}{2M_{B_q}} &= \frac{f_{B_q}^2 M_{B_q}}{2} (B_{1,2}^q + \delta_{1,2}^{qq}) \\ \frac{\langle B_q | O_{3,4}^q | B_q \rangle}{2M_{B_q}} &= \frac{f_{B_q}^2 M_{B_q}}{2} (\epsilon_{3,4}^q + \delta_{3,4}^{qq}) \\ \frac{\langle B_q | O_i^{q'} | B_q \rangle}{2M_{B_q}} &= \frac{f_{B_q}^2 M_{B_q}}{2} \delta_i^{qq'} \quad (q \neq q') \end{split} \\ \frac{\langle B_q | O_i^{q'} | B_q \rangle}{2M_{B_q}} &= \frac{f_{B_q}^2 M_{B_q}}{2} \delta_i^{qq'} \quad (q \neq q') \end{split}$$

VIA  $\rightarrow$  B  $\approx$  1,  $\epsilon \approx$  0. LQCD confirms di Pierro–Sachrajda (1998), Becirevic et al (2001)  $\delta$ 's not calculated  $L_{1,3}$  from exploratory calculation di Pierro et al (1999)  $\delta$ 's not calculated

### Lifetime Ratios: Theory



Tarantino CKM2005, Beauty2005, Franco-Lubicz-Mescia-Tarantino, npb633 (2002) 212



Gabbiani-Onishchenko-Petrov prd70 (2004) 094031

## Lifetime Ratios: Comparison

|                                     | Expt              | T05             | GOP             |
|-------------------------------------|-------------------|-----------------|-----------------|
| $\frac{\tau(B^+)}{\tau(B^0)}$       | $1.076 \pm 0.008$ | $1.06 \pm 0.02$ | $1.06 \pm 0.02$ |
| $rac{	au(B_{s})}{	au(B^{0})}$      | $0.957 \pm 0.020$ | $1.00\pm0.01$   | $1.00\pm0.01$   |
| $\frac{\tau(\Lambda_b)}{\tau(B^0)}$ | $0.844 \pm 0.043$ | $0.88 \pm 0.05$ | $0.86 \pm 0.05$ |

- Expt is HFAG with van Kooten, FPCP2006 for  $\tau(B_s)$
- ► T05 is Tarantino CKM2005, updating analysis of Franco et al, 2002
- ► GOP is Gabbiani–Onishchenko–Petrov, 2004

# $\Delta \Gamma_d$ and $\Delta \Gamma_s$ Experiment

#### van Kooten, FPCP2006



HFAG 2006 (prelim)

$$\frac{\Delta\Gamma_d}{\Gamma_d} = 0.009 \pm 0.037$$

## Lifetime Differences

 Lifetime difference for hadron H<sub>b</sub> depends on off-diagonal decay matrix element (ΔB = 2):

$$\Delta\Gamma_{H_b}=-rac{1}{m_{H_b}}\langlear{H}_b|\mathcal{T}|H_b
angle$$

- Use HQE to organise as series of operators of increasing dimension with calculable coefficients containing inverse powers of m<sub>b</sub>
  - leading contribution at  $O(1/m_b^3)$ : two dim-6 operators
  - at  $O(1/m_b^4)$ , four more dim-7 operators
- To complete the calculation need matrix elements of the operators

# $\Delta\Gamma_s$ , $\Delta\Gamma_d$ : Theoretical Status

$$\Delta \Gamma = \left(\frac{\Lambda}{m_b}\right)^3 \left(\Gamma_3^{(0)} + \frac{\alpha_s}{4\pi} \Gamma_3^{(1)} + \cdots\right) \\ + \left(\frac{\Lambda}{m_b}\right)^4 \left(\Gamma_4^{(0)} + \cdots\right) \\ + \left(\frac{\Lambda}{m_b}\right)^5 \left(\Gamma_5^{(0)} + \cdots\right) + \cdots$$

- Γ<sup>(0)</sup><sub>3</sub>: Hagelin, Buras et al, Datta et al, Voloshin et al, Chau, Franco et al (from 1981)
- Γ<sup>(1)</sup><sub>3</sub>: Beneke–Buchalla–Greub–Lenz–Nierste (1998), Ciuchini–Franco–Lubicz–Mescia–Tarantino (2003)
- Γ<sup>(0)</sup><sub>4</sub>: Beneke–Buchalla–Dunietz (1996), Dighe et al (2001), Ciuchini–Franco–Lubicz–Mescia–Tarantino (2003)
- $\Gamma_5^{(0)}$ : Lenz–Nierste (2006) prelim

### Lifetime Differences: Matrix Elements

Leading contribution in 1/m<sub>b</sub>: two operators

$$O_1=(ar b\gamma^\mu Lq)(ar b\gamma_\mu Lq), \qquad O_2=(ar bLq)(ar bLq)$$

- O₁ also determines ∆m
- parameterize as  $\langle \bar{B}_q | O_i^q | B_q \rangle = \text{const} \times f_{B_q}^2 B_i$
- ► B<sub>1,2</sub> from lattice: Gimènez-Reyes (2000), Hashimoto et al (2000), JLQCD (2001-2003), Becirevic et al (2000, 2001)

### Subleading contribution: four dimension-7 operators

► two operators related to complete set of  $\Delta B = 2$  operators calculated by lattice (Becirevic et al (2001)); others by vacuum insertion

Matrix elements for leading contribution in  $1/m_b$ . Two operators:

$$O_1 = (\bar{b}\gamma^{\mu}Lq)(\bar{b}\gamma_{\mu}Lq), \qquad O_2 = (\bar{b}Lq)(\bar{b}Lq)$$

|                            | B <sup>s</sup> <sub>1</sub> | $B_2^s$               |                            |
|----------------------------|-----------------------------|-----------------------|----------------------------|
| HQET, static               | 0.83(5)(6)                  | 0.81(2)(10)           | Gimènez–Reyes, 2000        |
| NRQCD, $O(1/m_b)$          | 0.85(3)(11)                 | 0.82(2)(11)           | Hashimoto et al, 2000      |
| NRQCD, $N_f = 2$           | 0.85(2)(6)                  | 0.84((6)(8)           | JLQCD, 2001–2003           |
| QCD, $m_Q \rightarrow m_b$ | $0.91(3)(^0_6)$             | $0.86(2)\binom{2}{3}$ | APE, Becirevic et al, 2000 |
| QCD & HQET                 | 0.87(2)(5)                  | 0.84(2)(4)            | APE, Becirevic et al, 2001 |

# Lifetime Differences: Theory Output





LO red, NLO blue (Ciuchini et al (2003), Tarantino Beauty2005)

- 1/mb corrections important
- Size and same sign of corrections above led Lenz–Nierste to consider 1/m<sup>2</sup><sub>b</sub> corrections: turn out to be small (Lenz–Nierste (2006) prelim)
- ► Change operator basis to make coefficient of ∆m<sub>s</sub> operator dominant: reduces uncertainty from QCD and 1/m<sub>b</sub> corrections (Lenz–Nierste (2006) prelim)

# $\Delta\Gamma_s/\Gamma_s$ : Theory Output

Two ways to quote a number:

•  $\Delta \Gamma / \Gamma = \Delta \Gamma_{\text{theo}} \tau_{\text{expt}}$ Pro: independent of new physics in mixing Con: depends on  $f_{B_s}^2$ 

•  $\Delta\Gamma/\Gamma = (\Delta\Gamma/\Delta m)_{\text{theo}} \Delta m_{s,\text{expt}} \tau_{\text{expt}}$ Pro: theoretically clean Con: might depend on new physics in  $\Delta m_s$ 

Lenz-Nierste favour first method and find

 $(\Delta\Gamma/\Gamma)_s = 0.158^{+0.046}_{-0.051}$  Lenz–Nierste (2006) prelim

They use  $f_{B_s} = 245 \,\mathrm{MeV}$  (both methods agree for  $f_{B_s} = 221 \,\mathrm{MeV}$ )

# Lifetime Differences: Comparison

|                                   | Expt            | Theory          |
|-----------------------------------|-----------------|-----------------|
| $rac{\Delta\Gamma_s}{\Gamma_s}$  | $0.14\pm0.06$   | $0.16 \pm 0.05$ |
| $\frac{\Delta\Gamma_d}{\Gamma_d}$ | $0.009\pm0.037$ | $0.003\pm0.001$ |

- ► Expt is van Kooten, FPCP2006 for B<sub>s</sub>, HFAG, hep-ex/0603003 for B<sub>d</sub>
- Theory is Lenz–Nierste (2006) prelim

### **CP-violation Parameters**

- Determination of NLO QCD and 1/mb corrections by Beneke–Buchalla–Lenz–Nierste (2003) and Ciuchini–Franco–Lubicz–Mescia–Tarantino (2003)
- Comparison of LO (red) and NLO (blue) (Ciuchini et al, updated

Tarantino Beauty2005



BBLN



 $\left| \frac{q}{p} \right|_{d} - 1 \quad (2.5 \pm 0.6) \times 10^{-4} \quad (2.96 \pm 0.67) \times 10^{-4} \\ \left| \frac{q}{p} \right|_{s} - 1 \quad -(1.1 \pm 0.2) \times 10^{-5} \quad -(1.28 \pm 0.28) \times 10^{-5}$ 

# LQCD

- Lattice computations put QCD on a finite discrete Euclidean space-time lattice and do functional integrals by Monte-Carlo
- Quantities which can be calculated include:
  - hadronic masses (and hence quark masses)
  - matrix elements of form

 $\langle 0|O|H \rangle$  eg leptonic decay constants  $\langle H_2|O|H_1 \rangle$  eg semileptonic form-factors

where O's are local composite operators and H,  $H_1$  and  $H_2$  are hadrons.

- Recently have learned how to evaluate matrix elements with two-hadron states below inelastic threshold.
- The quenched approximation, in which vacuum polarization effects are neglected is now largely removed.

# Improving Precision: Light Quarks

Emphasis now on reducing masses of the u and d quarks in the simulations, to control chiral extrapolation.

|                   | $m_q/m_s$ | $m_{\pi}{ m MeV}$ | $m_{\pi}/m_{ ho}$ |
|-------------------|-----------|-------------------|-------------------|
| SU(3) limit       | 1         | 690               | 0.68              |
| Currently typical | 1/2       | 490               | 0.55              |
| Impressive        | 1/4       | 340               | 0.42              |
| MILC              | 1/8       | 240               | 0.31              |
| Physical          | 1/25      | 140               | 0.18              |

- Want to use lattice actions with ~ O(a<sup>2</sup>) discretization errors (a = lattice spacing) which give good control of chiral behaviour at reasonable computational cost.
- Challenge set by MILC (and collaborating groups using their data) using Improved Staggered Fermions, who have calculated many quantities with small quoted errors.

# **Staggered Fermions**

- Unphysical tastes removed by taking 4th root of fermionic determinant
- No proof that this is correct, but growing circumstantial evidence and no counter-example
- Staggered chiral perturbation theory has to include the a-dependence and has many parameters (e.g. over 50 for f<sub>π</sub>). The massless limit (m → 0) cannot be taken before the continuum limit (a → 0)
- ► matching lattice ↔ continuum is done perturbatively

# Staggered Fermions and Others

- Unphysical tastes removed by taking 4th root of fermionic determinant
- No proof that this is correct, but growing circumstantial evidence and no counter-example
- Staggered chiral perturbation theory has to include the a-dependence and has many parameters (e.g. over 50 for f<sub>π</sub>). The massless limit (m → 0) cannot be taken before the continuum limit (a → 0)
- ► matching lattice ↔ continuum is done perturbatively
- Confirmation of extrapolations and procedures by other groups would be welcome
- Other light quark actions are also being used: improved Wilson, twisted mass, domain wall/overlap. Results from these with comparable parameters to those now available with staggered quarks could lead to full confidence in the results.

Typical lattice spacings  $1.5 \,\text{GeV} < a^{-1} < 3 \,\text{GeV}$  preclude *direct* simulation of *b*-quarks (and questionable even for *c*-quarks) Actions used for heavy quarks include

- QCD with heavy ish quarks and extrapolation in mass
- HQET
- NRQCD
- Fermilab/Tsukuba action

Results from different formulations have been consistent

# Heavy Quarks

### HQET

Challenge is to go beyond static limit to  $O(1/m_b)$  and to perform nonperturbative renormalisation.

ALPHA collaboration

### NRQCD

Expansion in velocity of heavy quarks. Particularly applicable to quarkonium but also used in heavy-light physics. No continuum limit [errors of order  $1/(m_b a)^n$ ]

### Fermilab/Tsukuba action

Nonrelativistic interpretation: breaks hypercubic to cubic symmetry  $\rightarrow$  more terms in action and operators for matrix elements

El Khadra-Kronfeld-Mackenzie (1996)

Ideas being developed for nonperturbative determination of parameters in action Lin–Christ (2005,06)

### Conclusions

- Mixings: awaiting fully-unquenched results for B parameter and confirmation by more than one group
- Lifetime ratios and differences:
  - spectator effects can be large enough to explain Λ<sub>b</sub> lifetime puzzle
  - B<sub>s</sub> could get interesting?
  - hadronic input uncertainty: need to update LQCD matrix elements
- LQCD: unquenched simulations now standard, with much attention focused on light quarks (choice of action and chiral extrapolation).