

Neutral Meson Mixing

Quark mixing \Rightarrow non-diagonal Hamiltonian for $\langle \overline{B} | H | B \rangle$

dominated by top quark contribution $H = \begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix}$ dominated by $b \rightarrow c \overline{c} s decay$

Diagonalizing the Hamiltonian results in

• two mass eigenstates $|B_s^{Heavy}\rangle$ and $|B_s^{Light}\rangle$

• two masses m_H and m_L , with $\Delta m \equiv m_H - m_L$

• two decay widths Γ_H and Γ_L , with $\Delta \Gamma \equiv \Gamma_L - \Gamma_H$ (> 0 in Standard Model) 4 July, 2006

B_s System and CP violation

CP violating
weak phase
$$e^{i\delta\phi} = \frac{V_{ts}V_{tb}^*}{V_{ts}^*V_{tb}}\frac{V_{cs}^*V_{cb}}{V_{cs}V_{cb}^*}$$

$$2\beta_{s} \leftrightarrow \delta\phi (SM)$$

4 In Standard Model, $\delta \phi \approx 2\lambda^2 \eta \approx O(0.03)$, very small.

4 Much larger measurement of $\delta \phi \Rightarrow$ a striking signal of new physics in $B_s - \overline{B}_s$ mixing.

$$\mathbf{B}_{\mathrm{s}} \rightarrow \mathbf{J}/\psi + \phi \left\langle \begin{vmatrix} \mathbf{B}_{\mathrm{L}} \rangle \approx \left(\frac{1+e^{i\delta\phi}}{2}\right) \begin{vmatrix} \mathbf{B}_{\mathrm{s}} \end{vmatrix} + \left(\frac{1-e^{i\delta\phi}}{2}\right) \begin{vmatrix} \mathbf{B}_{\mathrm{s}} \end{vmatrix} \\ \mathbf{B}_{\mathrm{s}} \rangle + \left(\frac{1+e^{i\delta\phi}}{2}\right) \begin{vmatrix} \mathbf{B}_{\mathrm{s}} \end{vmatrix} \\ \mathbf{B}_{\mathrm{H}} \rangle \approx -\left(\frac{1-e^{i\delta\phi}}{2}\right) \begin{vmatrix} \mathbf{B}_{\mathrm{s}} \end{vmatrix} + \left(\frac{1+e^{i\delta\phi}}{2}\right) \begin{vmatrix} \mathbf{B}_{\mathrm{s}} \end{vmatrix} \\ \mathbf{B}_{\mathrm{s}} \rangle \\ \mathbf{B}_{\mathrm{s}} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-} \& \mathbf{B}_{\mathrm{s}} \rightarrow \mathbf{D}_{\mathrm{s}}^{(*)+} \mathbf{D}_{\mathrm{s}}^{(*)-} \end{cases}$$

4 New physics tends to increase $\delta \phi \Rightarrow$ smaller $\Delta \Gamma$

♣ Any dependence on △m_s cancels in untagged samples. 4 July, 2006
Kin Yip

Untagged B_s Decay Rate in Time & Angles

$$\frac{d^{3}\Gamma \rightarrow J/\psi (\rightarrow 1^{+}1) \phi (\rightarrow K^{+}K)}{d\cos\theta \ d\phi \ d\cos\psi \ dt} \propto \frac{9}{16\pi} \left[2|A_{0}(0)|^{2} e^{-\Gamma_{L} t} \cos^{2}\psi (1 \cdot \sin^{2}\theta \cos^{2}\phi) + sin^{2}\psi \left\{ |A_{\parallel}(0)|^{2} e^{-\Gamma_{L} t} (1 \cdot \sin^{2}\theta \sin^{2}\phi) + |A_{\perp}(0)|^{2} e^{-\Gamma_{H} t} \sin^{2}\theta \right\}$$

$$+ \frac{1}{\sqrt{2}} \sin^{2}\psi \left\{ |A_{0}(0)||A_{\perp}(0)| \cos(\delta_{2} \cdot \delta_{1})e^{-\Gamma_{L} t} \sin^{2}\theta \sin^{2}2\phi \right\}$$

$$+ \left\{ \frac{1}{\sqrt{2}} |A_{0}(0)||A_{\perp}(0)| \cos\delta_{2} \sin^{2}\psi \sin^{2}\theta \cos\phi \right\} \frac{1}{2} \left(e^{-\Gamma_{H} t} \cdot e^{-\Gamma_{L} t} \right) \delta\phi$$

$$+ \left\{ \frac{1}{\sqrt{2}} |A_{\parallel}(0)||A_{\perp}(0)| \cos\delta_{1} \sin^{2}\psi \sin^{2}\theta \sin\phi \right\} \frac{1}{2} \left(e^{-\Gamma_{H} t} \cdot e^{-\Gamma_{L} t} \right) \delta\phi$$

$$+ \left\{ \frac{1}{\sqrt{2}} |A_{\parallel}(0)||A_{\perp}(0)| \cos\delta_{1} \sin^{2}\psi \sin^{2}\theta \sin\phi \right\} \frac{1}{2} \left(e^{-\Gamma_{H} t} \cdot e^{-\Gamma_{L} t} \right) \delta\phi$$

$$+ \left\{ \frac{1}{\sqrt{2}} |A_{\parallel}(0)||A_{\perp}(0)| \cos\delta_{1} \sin^{2}\psi \sin^{2}\theta \sin\phi \right\} \frac{1}{2} \left(e^{-\Gamma_{H} t} \cdot e^{-\Gamma_{L} t} \right) \delta\phi$$

 $\delta_1 \equiv Arg[A_{\parallel}(0)^*A_{\perp}(0)]$ and $\delta_2 \equiv Arg[A_0(0)^*A_{\perp}(0)]$ are CP-conserving strong phases

No dependence on Δm_s

Maximum Likelihood Fit

Simultaneous fit to mass, proper decay length and 3 angles using an unbinned maximum log-likelihood method

$$\mathcal{L} = \prod_{i=1}^{N} \left[f_{sig} \mathcal{F}_{sig}^{i} + (1 - f_{sig}) \mathcal{F}_{bck}^{i} \right]$$

M

30 parameters :	1	f _{sig} = signal fraction	
	2	signal mass, width	
	3	A_{\perp} , $ A_0 ^2$ - $ A_{\parallel} ^2$, 1 strong phase	
	1	$\mathbf{c} \boldsymbol{\tau} = \mathbf{c} / \overline{\Gamma}, \qquad \overline{\Gamma} = (\Gamma_{\mathrm{L}} + \Gamma_{\mathrm{H}}) / 2$	
	1	$\Delta \Gamma = \Gamma_{\rm L} - \Gamma_{\rm H}$	$\cot \delta \phi = 0$
	3	bkg mass (1 prompt, 2 long-lived)	set $0\psi = 0$
	1	$\sigma(ct)$ scale	
	6	bkg ct shape	
	4	bkg transversity (2 prmpt + 2 long-lived)	
	4	bkg angle ϕ (2 prompt + 2 long-lived)	
	2	bkg angle ψ (1 prompt + 1 long-lived)	
	2	hkg "interference" (1 prompt + 1 hkg)	

4 CDF should have similar no. of parameters

Earlier, PRL 94, 101803, 2005, CDF has used a similar 3 angle ($\theta, \, \phi, \, \psi$) fit/analysis with 260 $pb^{\text{-1}}$ of data

$$A_{0} = 0.784 \pm 0.039 \pm 0.007$$

$$A_{||} = (0.510 \pm 0.082 \pm 0.013)e^{(1.94 \pm 0.36 \pm 0.03)i}$$

$$|A_{\perp}| = 0.354 \pm 0.098 \pm 0.003$$

$$\tau_{L} = 1.05 \stackrel{+0.16}{_{-0.13}} \pm 0.02 \text{ ps}$$

$$\tau_{H} = 2.07 \stackrel{+0.58}{_{-0.46}} \pm 0.03 \text{ ps}$$

$$\Delta\Gamma/\Gamma = 0.65 \stackrel{+0.25}{_{-0.33}} \pm 0.01$$

$$\Delta\Gamma = 0.47 \stackrel{+0.19}{_{-0.24}} \pm 0.01 \text{ ps}^{-1} \qquad \overline{\tau}(B_{0}^{0}) =$$

$$\begin{aligned} \overline{\tau}(B_s^0) =& 1.53 \pm 0.08^{+0.01}_{-0.03} \text{ ps} \\ \Delta \Gamma = & 0.15 \pm 0.10^{+0.03}_{-0.04} \text{ ps}^{-1} \\ R_{\perp} = & |A_{\perp}(0)|^2 = & 0.19 \pm 0.05 \pm 0.01 \\ |A_0(0)|^2 - & |A_{||}(0)|^2 = & 0.35 \pm 0.07 \pm 0.01 \\ \delta_1 - & \delta_2 = & 2.5 \pm 0.4 \pm 0.02 \end{aligned}$$

4 With δ_1 free and $\delta_2 = 0$, we obtain $\delta \phi = -0.9 \pm 0.7$; **4** CP-violating angle $\delta \phi$ ~consistent with 0 (no CP violation) within statistical uncertainty of ± 0.7 .

4 Working on to constrain all these δ_1/δ_2 and $\delta\phi$ better.

Trigger bias for signal is extracted from detailed simulation.

4Procedure validated in unbiased $B \rightarrow J/\psi X$ decays from dimuon trigger.

Check that lifetime fits of samples <u>with/without</u> applying track-trigger cuts yield consistent results.

4Lifetime p.d.f for background is extracted from higher mass data sideband.

B	$\sim I$	K^+K^-	lifetime	results	(360)	pb
---	----------	----------	----------	---------	-------	----

	$c\tau(B^0)$ [µm]	$c\tau(B_s^0 \to K^+K^-) \; [\mu \mathrm{m}]$
both free	452 ± 24	463 ± 56
$c\tau(B^0)$ constrained to PDG	_	458 ± 53

 $B_s \rightarrow K^+K^-$ is CP-even (~ 5% uncertainty): has the lifetime of "light B_s ":

 $\tau_L = 1.53 \pm 0.18 \ (stat.) \pm 0.02 \ (syst.)$ ps

Combine with HFAG average $(\tau_L^2 + \tau_H^2)/(\tau_L + \tau_H)$:

 $\frac{\Delta \Gamma_s^{\mathsf{CP}}}{\Gamma_s} = -0.08 \pm 0.23 \ (stat.) \pm 0.03 \ (syst.)$

detector alignment;

dE/dx model;

trigger-bias.

input $p_{\rm T}(B)$ in simulation;

lifetime model of background;

$$\mathbf{B}_{s} \rightarrow \mathbf{D}_{s}^{(*)+} \mathbf{D}_{s}^{(*)-} and \Delta \Gamma_{s}$$

Γ₁₂ dominated by decay b + cc̄s
 from decays into final states common
 to both B⁰_s (b̄s) and B⁰_s (b̄s)

For \textit{B}^{0}_{d} , analogous diagram Cabibbo suppressed, $\Gamma_{\!\!1\!2}$ negligible

ΔΓ_s: CP-even final states, ΔΓ_s ↑
 CP-odd final states, ΔΓ_s ↓

 $B_{\rm s}^{0} \rightarrow D_{\rm s}^{+} D_{\rm s}^{-}$ is pure CP even, and under various theoretical assumptions, $B_{\rm s}^{0} \rightarrow D_{\rm s}^{(*)+} D_{\rm s}^{(*)-}$ inclusive, also CP even to ~5% (Phys. Lett. **B316** (1993) 567) Likely needs re-examination!!

$$\frac{\Delta \Gamma_{\rm s}^{\rm CP}}{\Gamma_{\rm s}} \sim \frac{2Br(B_{\rm s}^0 \rightarrow D_{\rm s}^{(*)+} D_{\rm s}^{(*)-})}{1 - Br(B_{\rm s}^0 \rightarrow D_{\rm s}^{(*)+} D_{\rm s}^{(*)-})/2}$$

Measure ratio:

 $\Delta \Gamma_{\rm s} = 0.097 \stackrel{+0.041}{_{-0.042}} \text{ ps}^{-1}$ $\overline{\tau} = \frac{1}{\Gamma_s} = 1.461 \pm 0.030 \text{ ps}$

 2.3σ from zero, new physics tends to reduce the measured $\Delta \Gamma_{s}$

$\frac{\Delta\Gamma_s}{\Delta m_s}$ comparison between expt. and theory

- **Updating from Phys. Lett. B 459, 631 (1999) by U. Nierste:**
- \Rightarrow SM prediction:

$$\frac{\Delta\Gamma_s}{\Delta m_s} = (47 \pm 8) \times 10^{-4}$$

4 Expt. meas. from $\Delta \Gamma_s$ and latest Δm_s :

$$\frac{\Delta\Gamma_s}{\Delta m_s} = \frac{0.097 \pm 0.042 \text{ ps}^{-1}}{17.31_{-0.18}^{+0.33} \pm 0.07 \text{ ps}^{-1}}$$

= (56±24)×10⁻⁴ Disappointingly in agreement
with Standard Model prediction !

Summary

$$\Delta \Gamma_{\rm s} = 0.097 \stackrel{+0.041}{_{-}0.042} \text{ ps}^{-1} \qquad \overline{\tau} = \frac{1}{\Gamma_{\rm s}} = 1.461 \pm 0.030 \text{ ps}$$

- CP eigenstate mixures and branching fraction measurements now give a "world average" of ΔΓ_s
 ~2.3 σ away from zero;
- **4** Results are consistent with SM so far;
- **4** More results from Tevatron (and elsewhere) will pin $\Delta\Gamma_s$ down to greater accuracy.

BACKUP

Lifetime Difference & CP violation

- $\blacksquare B_s \rightarrow J/\psi \phi : \text{Pseudoscalar} \rightarrow \text{Vector} \text{Vector}$
- Decay amplitude decomposed into 3 linear polarization states
 - $\blacksquare A_0 = S + D \text{ wave } \Rightarrow P \text{ even}$
 - $\blacksquare \mathbf{A}_{||} = \mathbf{S} + \mathbf{D} \text{ wave } \Rightarrow \mathbf{P} \text{ even}$
 - $\blacksquare \mathbf{A}_{\perp} = \mathbf{P} \text{ wave } \Rightarrow \mathbf{P} \text{ odd}$
- If CP violation neglected ⇒ interpreted as lifetimes of 2 mass eigenstates:
 - $\blacksquare B_{s,\text{Light}} \approx \text{CP even}$
 - $\blacksquare B_{s,\text{Heavy}} \approx \text{CP odd}$
 - ▶ angular distributions are different

■ Angular analysis separates CP eigenstates ⇒ measure two lifetimes 4 July, 2006 Kin Yip

CKM Matrix and Unitarity triangle

Relates quark mass and weak eigenstates

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

SM: CP-violating processes solely related to one phase in CKM.

'bd' (THE unitary triangle) Large effort in B physics Mainly at B factories

'bs' (A 'squashed' unitary triangle)

 $\beta \rightarrow \beta_{s,s}$ small in SM

Interesting to check how small/big β_s really is.

Currently: Tevatron domain

Systematics

•			*	U 1 1	
Source	$c\tau(B_s^0)$	$\Delta\Gamma$	R_{\perp}	$ A_0(0) ^2 - A_{\parallel}(0) ^2$	$\delta_1 - \delta_2$
	$\mu { m m}$	ps^{-1}		,	
Acceptance vs. θ, φ, ψ	± 0.5	± 0.001	± 0.003	± 0.01	± 0.02
Procedure test	± 2.0	± 0.025	± 0.01	-	-
Detector alignment	± 2.0	-	-	-	-
ct definition	1.3	0.001	-0.001	-0.002	-0.009
"Outlier"	-7.5	-0.03	0.01	0.0	0.0
Total	-8.0, +3.2	-0.04, +0.03	± 0.01	± 0.01	± 0.02

 4 One "outlyer" → treat its effect as systematic uncertainty Event Run #: 210344 Event #:23385781 unlikely signal or background Signal: mass 2.3 σ from peak, lifetime 8.5 x mean Bkg: 10.2 x mean for "right slope long"

Some selection cuts

data before last Tevatron shutdown

B _s candidate mass	$5.0 < M(J/\psi,\phi) < 5.8 \text{ GeV}$
J/ψ candidate mass	$2.9 < M(\mu^+,\mu^-) < 3.3 \text{ GeV}$
Non-J/ψ meson mass	1.01 < M(K ⁺ ,K ⁻) < 1.03 GeV
$\mathbf{B}_{\mathbf{s}} \mathbf{p}_{\mathbf{T}}$	> 6.0 GeV
$J/\psi p_{T}$	> 4.0 GeV if η < 1.0
$\phi \mathbf{p_T}$	> 1.5 GeV
$J/\psi, \phi \chi^2$	< 10.0
$\mathbf{K^{\pm}} \mathbf{p}_{\mathbf{T}}$	> 0.7 GeV
SMT hits each track (incl. fdisk)	>1
SMT+CFT hits on track	>7
B candidate decay length error	< 0.006 cm

Total number of $B_s \rightarrow J/\psi \phi$ candidates: 21380 (PRL 2005: 9699)

