Theory Review on Rare K Decays in the Standard Model and Beyond

Christopher Smith

b UNIVERSITÄT BERN

Outline

A- Rare K decays in the Standard Model Anatomy of the decay processes $K \to \pi v \overline{\nu}, K_L \to \pi^0 \ell^+ \ell^-, K_L \to \ell^+ \ell^-$

B- Rare K decays beyond the Standard Model Various models and possible signals

C- Conclusion

Rare K decays In the Standard Model

• Electroweak FCNC

For the *charged current*, the Fermi interaction is obtained by integrating out the *W*:

FCNC are generated at one-loop (penguin and box diagrams). Typically:

The Inami-Lim function C_0^Z generates a violation of the *GIM mechanism*: if $C_0^Z(x) = C^{st} \implies \lambda_{\mu}C_0^Z(x_{\mu}) + \lambda_c C_0^Z(x_c) + \lambda_t C_0^Z(x_t) = 0$

FCNC

 $\sqrt{2}K_1 = K^0 - \overline{K}^0, \ \sqrt{2}K_2 = K^0 + \overline{K}^0, \ \langle \pi^0 | (\overline{s}d)_V | K^0 \rangle = -\langle \pi^0 | (\overline{d}s)_V | \overline{K}^0 \rangle$

If only B_0^W and C_0^Z contribute, light quark effects are suppressed: $\langle \pi^0 v \overline{v} | H_{eff} | K_L \approx K_2 \rangle \sim \operatorname{Im} \lambda_u y_u^{\vee} + \operatorname{Im} \lambda_c y_c^{\vee} + \operatorname{Im} \lambda_t y_t^{\vee}$ $\langle \pi^0 v \overline{v} | H_{eff} | K_S \approx K_1 \rangle \sim \operatorname{Re} \lambda_u y_u^{\vee} + \operatorname{Re} \lambda_c y_c^{\vee} + \operatorname{Re} \lambda_t y_t^{\vee}$ $y_q^{\vee} \supset B_0^W, C_0^Z \sim \frac{m_q^2}{M_W^2}$

When D_0^{γ} also contributes, long-distance effects may be significant: $\langle \pi^0 \ell^+ \ell^- | H_{eff} | K_L \approx K_2 \rangle \sim \operatorname{Im} \lambda_u y_u^{\ell} + \operatorname{Im} \lambda_c y_c^{\ell} + \operatorname{Im} \lambda_t y_t^{\ell}$ $\langle \pi^0 \ell^+ \ell^- | H_{eff} | K_S \approx K_1 \rangle \sim \operatorname{Re} \lambda_u y_u^{\ell} + \operatorname{Re} \lambda_c y_c^{\ell} + \operatorname{Re} \lambda_t y_t^{\ell}$ $y_q^{\ell} \supset D_0^{\gamma} \sim \log\left(\frac{m_q}{M_W}\right)$

Indirect CP-violation: $\langle \pi^0 \nu \overline{\nu}, \pi^0 \ell^+ \ell^- | H_{eff} | K_{L(S)} \rangle = \varepsilon \langle \pi^0 \nu \overline{\nu}, \pi^0 \ell^+ \ell^- | H_{eff} | K_{1(2)} \rangle$

QCD corrections

Step 1: integrating out the top, W, Z

Generates local FCNC operators, for example:

Generates local Fermi four-fermion operators (all fermions except the top)

QCD corrections above M_W are computed perturbatively, and encoded into the Wilson coefficient initial values:

$$H_{eff}(M_W) \sim C_i(M_W) Q_i^{u,c} + y_{(6)}^{v}(M_W) (\overline{s}d)_{V-A} (\overline{v}v)_{V-A}$$

Step 2: crossing the charm quark threshold

QCD corrections are resummed (running down), leading to corrected values for the Wilson coefficients, at lower scales:

 $H_{eff}(m_c) \sim C_i(m_c) Q_i^{u,c} + y_{(6)}^{\vee}(m_c) (\overline{s}d)_{V-A} (\overline{v}v)_{V-A}$

Four-fermion operators are combined to integrate out the *c* (similar for b and τ)

Momentum of external particles (with $q^2 \approx m_K^2$) \rightarrow Dimension 8, 10,... operators:

 $H_{eff}(m_c) \sim C'_i(m_c) Q_i^u + y_{(6)}^{\prime v}(m_c) (\bar{s}d)_{V-A} (\bar{v}v)_{V-A} + y_{(8)}^v(m_c) (\bar{s}d)_{V-A} \partial^2 (\bar{v}v)_{V-A} + \dots$

FCNC + QCD

Step 3: computing matrix elements

 $H_{eff}(\mu) = C'_{i}(\mu) Q_{i}^{\mu} + y_{(6)}^{\prime \nu}(m_{c}) (\bar{s}d)_{V-A} (\bar{v}v)_{V-A} + y_{(8)}^{\nu}(m_{c}) (\bar{s}d)_{V-A} \partial^{2} (\bar{v}v)_{V-A} + \dots$

- For dim. 6 semi-leptonic operators, matrix elements extracted from experiment: $\left\langle \pi^{0} \left| (\overline{s}d)_{V} \right| K^{0} \right\rangle \approx \left\langle \pi^{0} \left| (\overline{s}u)_{V} \right| K^{+} \right\rangle, \quad K^{+} \to \pi^{0} \ell^{+} \nu_{\ell} \left(K_{\ell 3} \right)$ $\left\langle 0 \right| (\overline{s}d)_{A} \left| K^{0} \right\rangle \approx \left\langle 0 \right| (\overline{s}u)_{A} \left| K^{+} \right\rangle, \quad K^{+} \to \ell^{+} \nu_{\ell} \left(K_{\ell 2} \right)$

- For dim. 6 four-quark operators, matrix elements dealt with in ChPT:

Give CP-conserving contributions (ϵ ' small), typically through photon penguins. The Low-Energy Constants $G_{8,27...}$ are fixed from experiment.

- For dim. 8 operators, matrix elements from approximate matching with ChPT.

 $K \to \pi \nu \overline{\nu}$

• The $K^+ \to \pi^+ \nu \overline{\nu}$ and $K_L \to \pi^0 \nu \overline{\nu}$ decays

$$Br(K_{L} \to \pi^{0} \nu \overline{\nu}) \approx \kappa^{0} \left(|\operatorname{Im} \lambda_{t} X(x_{t})|^{2} \right) \xrightarrow{\sim} Br(K_{S} \to \pi^{0} \nu \overline{\nu})$$

$$Br(K^{+} \to \pi^{+} \nu \overline{\nu}) \approx \kappa^{+} \left(|\operatorname{Im} \lambda_{t} X(x_{t})|^{2} + |\underbrace{\operatorname{Re} \lambda_{t} X(x_{t})}_{68\%} + \underbrace{\operatorname{Re} \lambda_{c} (P_{c} + \delta P_{u,c})}_{32\%}|^{2} \right)$$
From $K_{\ell 3}$, with isospin corr.*

*Marciano, Parsa ('96)

Precision Physics:

Dimension six *t*-quark: $X(x_t) = 1.464 \pm 0.041$

Buchalla, Buras ('93)

Dimension six *c*-quark: $P_c^{NNLO} = \lambda^4 (0.37 \pm 0.04)$ Buras, Gorbahn, Haisch, Nierste ('05)

Subleading *c-quark* dimension-eight operators Residual *u-quark* long-distance contributions ($\text{Re}\lambda_c \approx -\text{Re}\lambda_u$)

$$\delta P_{u,c} = \lambda^4 \left(0.04 \pm 0.02 \right)$$

Isidori,Mescia,C.S. ('05)

 $K_L \rightarrow \pi^0 \nu \overline{\nu}$: - Indirect CPV $\approx 1\%$ - CPC (dim. 8 from box with c, u) $\leq 0.01\%$ Buchalla, Isidori ('98)

$$\underline{K_L \to \pi^0 \ell^+ \ell^-}$$

• The $K_L \to \pi^0 \ell^+ \ell^-$ decay

1. Direct CPV: Two structures arise from top & charm integrations (known at NLO):

*Buchalla,D'Ambrosio,Isidori ('03)/de Rafael,Friot,Greynat ('04)

2. Indirect CPV:
$$A(K_L \to \pi^0 \ell^+ \ell^-)_{ICPV} = \varepsilon A(K_S \approx K_1 \to \pi^0 \ell^+ \ell^-), \ \varepsilon \approx 10^{-3}$$

- \rightarrow Photon penguin, long-distance dominated: to be estimated using ChPT
 - Meson loops are small; a single counterterm a_s dominates,
 - From NA48 measurements of $B(K_S \rightarrow \pi^0 \ell^+ \ell^-)$: $|a_S| = 1.2 \pm 0.2$.

D'Ambrosio, Ecker, Isidori, Portolés ('98)

 π^{0}

 $K_I \to \pi^{\vee} \ell$

3. CP-conserving:

CP-conserving matrix elements of Q_1, \dots, Q_6 give rise to pure long-distance contributions through $\gamma\gamma$ penguins:

ChPT $O(p^4)$ result is finite, and produces the lepton pair in a scalar state only.

Higher order effects estimated using the measurements of the $K_L \rightarrow \pi^0 \gamma \gamma$ rate and spectrum (KTeV & NA48):

- The ratio $R_{\gamma\gamma}^{\ell} = \frac{\Gamma(K_L \to \pi^0 \ell^+ \ell^-)_{J=0^{++}}}{\Gamma(K_L \to \pi^0 \gamma \gamma)}$ can be estimated theoretically within 30%. *Isidori, Unterdorfer, C.S. ('04)*
- Production of $(\gamma\gamma)_{J=2^{++}}$ is constrained by the low-energy end of the $\gamma\gamma$ spectrum, and is found negligible. *Buchalla,D'Ambrosio,Isidori ('03)*

$$\underline{K_L \to \pi^0 \ell^+ \ell^-}$$

4. Complete prediction

$$Br(K_{L} \rightarrow \pi^{0}\ell^{+}\ell^{-}) = \left(C_{dir}^{\ell}\kappa^{2} \pm C_{int}^{\ell} |a_{S}|\kappa + C_{mix}^{\ell} |a_{S}|^{2} + C_{\gamma\gamma}^{\ell}\right) \cdot 10^{-12}$$

$$C_{dir}^{e} \approx 2.3(y_{7V}^{2} + y_{7A}^{2}) \qquad \qquad C_{dir}^{\mu} \approx 0.55(y_{7V}^{2} + 2.33y_{7A}^{2})$$

$$C_{int}^{e} \approx 8.1y_{7V} \qquad \qquad \gamma_{4} \text{ phase-space} \qquad C_{int}^{\mu} \approx 1.9y_{7V}$$

$$C_{ind}^{e} \approx 14.5, C_{\gamma\gamma}^{e} \approx 0 \qquad \text{suppression} \qquad C_{ind}^{\mu} \approx 3.4, C_{\gamma\gamma}^{\mu} \approx 5.2$$

$$Helicity-suppressed$$

$$SM: \kappa = \text{Im} \lambda_{t} 10^{-4} \approx 1.4, \quad y_{7A} \approx -0.68, \quad y_{7V} \approx 0.73$$

5. Forward-Backward CP-asymmetry

$$A_{FB}^{\ell} = \frac{N(E_{-} > E_{+}) - N(E_{-} < E_{+})}{N(E_{-} > E_{+}) + N(E_{-} < E_{+})}$$

Helicity-suppressed, since proportional to the interference $CPC(0^{++}) \leftrightarrow CPV(1^{--})$

Can be used to fix the interference sign (i.e., sign of a_s)

$$\underline{K_L \to \ell^+ \ell^-}$$

• The $K_L \to \ell^+ \ell^-$ decay

1. Short-distance (top & charm quark) is CP-conserving and helicity-suppressed:

(known at NNLO) Gorbahn & Haisch ('06)

Good theoretical control (no γ penguin), and indirect CPV very small.

2. Long-distance yy penguin: the absorptive part is known precisely

$$K_{L} \qquad \mu^{-} \qquad K_{L} \qquad \pi^{0}, \eta, \eta' \qquad \mu^{-} \qquad K_{L} \qquad \mu^{0}, \eta, \eta' \qquad \mu^{0}$$

Estimate for the (divergent) dispersive part, which interferes with SD, obtained from experimental data on $K_L \rightarrow \gamma^* \gamma^*$ + perturbative behavior of up-quark $\gamma\gamma$ penguin. *Isidori & Unterdorfer ('03)*

3. Complete prediction:

$$Br(K_{L} \to \mu^{+}\mu^{-}) \approx ((1.1y_{7A} - 0.2 \pm 0.4^{+0.5}_{-0.5})^{2} + 6.7) \cdot 10^{-9}$$

top, charm, $Disp(\gamma\gamma)$, $Abs(\gamma\gamma)$ Br(

 $y_{7A} \approx -0.68$

 $Br(e^+e^-) \approx 10^{-12}$

$$\underline{K_L \to \ell^+ \ell^-}$$

4. Interference sign? Requires the sign of $A(K_L \rightarrow \gamma \gamma)$:

Gerard, Trine, C.S ('05)

Driven by Q_1 only \rightarrow vanishes at LO in SU(3) ChPT. U(3) ChPT needed to disentangle Q_1 , Q_2 and Q_6 (partial use of Large N_C : *not* the factorization approx.!)

 $A_{\gamma\gamma} \approx (\overline{G_8^s + 2G_{27}}/3) \left((0.46)_{\pi} - (1.83)_{\eta} - (0.12)_{\eta'} \right)$ $\rightarrow G_8^s / G_8 \approx \pm 1/3$

Theoretically, G_8^s can be estimated from the smooth Q_1 , Q_2 non-perturbative evolution (with a reasonable penguin fraction in the $\Delta I = \frac{1}{2}$ rule at the hadr. scale)

$$(C_1 + C_2)^2 (C_2 - C_1) = 1.0 \pm 0.3 \implies \begin{cases} G_8^s / G_8 = -0.38 \pm 0.12 \\ F_P \approx 65\%, F_{CC} \approx 35\% \end{cases}$$

• Summary of current status in the SM:

	Standard Model	Experiment	
$K_L \rightarrow \pi^0 \nu \overline{\nu}$	$2.81^{\tiny +0.56}_{\tiny -0.56}\cdot 10^{-11}$	< 2.86 · 10 ⁻⁷ E391a	
$K_L \rightarrow \pi^0 e^+ e^-$	$3.54_{-0.85}^{+0.98}\cdot10^{-11}$	$< 2.8 \cdot 10^{-10}$ KTeV	
$K_L \rightarrow \pi^0 \mu^+ \mu^-$	$1.41^{+0.28}_{-0.26}\cdot 10^{-11}$	$< 3.8 \cdot 10^{-10}$ KTeV	
$K^+ o \pi^+ u \overline{ u}$	$8.0^{+1.1}_{-1.1} \cdot 10^{-11}$	$14.7^{+13.0}_{-8.9} \cdot 10^{-11} \begin{array}{c} \text{E787} \\ \text{E949} \end{array}$	

Buras, Gorbahn, Haisch, Nierste ('05, '06)

Rare K decays Beyond the Standard Model

Motivations

To get a clear signal of New Physics:

- FCNC are suppressed in the SM
- SM background under good theoretical control (both LD and SD).

New Physics in the $\Delta S = 1$ FCNC can be O(10) with respect to the SM

To probe the nature of New Physics:

If NP effects are smaller, or if LHC finds NP signals before Kaon experiments: *It remains essential to probe the* $\Delta S = 1$ *sector.*

Indeed, in general, NP models involve many new parameters, but this may be a necessary step towards understanding the flavor/family structure.

Information on $\Delta S = 1$ crucial to get hints about this higher level of unification.

• The $K^+ \to \pi^+ \nu \overline{\nu}$ and $K_L \to \pi^0 \nu \overline{\nu}$ decays

The GN model-independent bound still leaves room for large effects:

$$B(K_L \to \pi^0 \nu \overline{\nu}) \le 4.4 \times B(K^+ \to \pi^+ \nu \overline{\nu}) \approx 1.7 \cdot 10^{-9} \qquad \text{Grossman \& Nir (`97)}$$

$$(90\% \ C.L.)$$

1. Not within the MSSM

With general New Physics effects in the *Electroweak Penguins*,

$$H_{eff}(K \to \pi \nu \overline{\nu}) \sim y_L^{\nu} (\overline{s}d)_{V-A} (\overline{\nu}\nu)_{V-A} + y_R^{\nu} (\overline{s}d)_{V+A} (\overline{\nu}\nu)_{V-A}$$

Examples:EEWP ← B physicsBuras,Fleischer,Recksiegel,Schwab ('04)Little HiggsRai Choudhury,Gaur,Joshi,McKellar ('04)Extra DimensionsBuras,Spranger,Weiler ('02)

With general New physics effects in New Operators:

 $H_{eff}(K \to \pi \nu \overline{\nu}) \sim y_{s}^{\nu} (\overline{s}d)(\overline{\nu}\nu) + y_{P}^{\nu} (\overline{s}d)(\overline{\nu}\gamma_{5}\nu)$

 $+ y_T^{\mathbf{v}} (\overline{s} \sigma_{\mu\nu} d) (\overline{\nu} \sigma^{\mu\nu} \nu) + y_{\widetilde{T}}^{\mathbf{v}} (\overline{s} \sigma_{\mu\nu} d) (\overline{\nu} \sigma^{\mu\nu} \gamma_5 \nu)$

Examples: Leptoquarks, R-parity violation, LFV ($\overline{v}^{i}\Gamma v^{j}, i \neq j$),...

Grossman, Nir ('97)/Grossman, Isidori, Murayama ('03)/Deandrea, Welzel, Oertel ('04)/Deshpande, Ghosh, He ('04)

$K \to \pi \nu \overline{\nu}$

2. Within the MSSM

For large $\tan \beta = v_u / v_d \approx m_t / m_b \approx 50$, get sensitive to higher order effective vertices in the H^{\pm} penguin: Isidori & Paradisi ('06)

 $(\overline{s}_{R}\gamma_{\mu}d_{R})(\overline{v}_{L}\gamma^{\mu}v_{L})$ $\sim (\tan\beta)^{4}$ Slow decoupling $\sim x_{tH} \log(x_{tH})$

For moderate $\tan \beta$, probe the up-squark sector through chargino penguins:

Beyond the single MIA: $\sim \left(\delta_{RL}^U\right)_{32}^* \left(\delta_{RL}^U\right)_{31}^*$, sensitive to up-squark A^U terms.

Nir, Worah ('98)/Buras, Romanino, Silvestrini ('98)/Colangelo, Isidori ('98)

Is it possible to saturate the GN bound in the MSSM?

Full scan over MSSM parameters, checking compatibility with B, K and electroweak data, and vacuum stability bounds.

No Mass Insertion Approximation.

Adaptive scanning to search for maximal effects. Brein ('04)

Enhancement by a factor ~30 still allowed for the neutral mode.

$K \to \pi \nu \overline{\nu}$

Within K & *B* observables, the $K \to \pi v \overline{v}$ modes are the best probe of \mathbf{A}^U terms

Isidori, Mescia, Paradisi, Trine, C.S. ('06)

$K \to \pi \nu \overline{\nu}$

3. Minimal Flavor Violation

To suppress FCNC, one invokes MFV defined in various ways:

Phenomenological.

No new operators, and CKM still rules all the FCNC (unique source for all CP-violation).

From symmetry principles:

SM Yukawas remain the only source of flavor-symmetry breaking.

- General: Parametrize the deviation of the penguin/box $B^W, C^Z, D^\gamma, ...$ still to be multiplied by CKM elements. $D^{Ambrosio, Giudice, Isidori, Strumia ('02)}$

Bobeth, Bona, Buras, Ewerth, Pierini, Silvestrini, Weiler ('05)

Isidori, Mescia, Paradisi, Trine, C.S. ('06)

- In the MSSM: Parametrize soft-breaking terms, and correspond to "minimal" departures with respect to mSUGRA (i.e. block-diagonal squark mass matrices in the super-CKM basis) *Buras,Gambino,Gorbahn,Jager,Silvestrini ('00)* D'Ambrosio,Giudice,Isidori,Strumia ('02)

Large top-quark Yukawa $\rightarrow \mathbf{A}^U \rightarrow K \rightarrow \pi v \overline{v}$

- Maximal Effects: Implementations differ in their MFV parametrizations, statistical treatments of errors, extraction of CKM elements and in the resulting correlations among observables. Still, enhancement of $Br(K \to \pi v \overline{v})$ always less than 25%.

$$K_L \to \pi^0 \ell^+ \ell^-$$

• The $K_L \to \pi^0 \ell^+ \ell^-$ (and $K_L \to \ell^+ \ell^-$) decays

- Can probe helicity-suppressed operators like those arising from Higgs FCNC.
- Can probe tensor/pseudotensor interactions (no matrix elements for $K_L \rightarrow \ell^+ \ell^-$)

$$\begin{split} H_{eff}(K_{L} \to \pi^{0}\ell^{+}\ell^{-}) \sim \\ y_{7V}(\overline{s}\gamma_{\mu}d)(\overline{\ell}\gamma^{\mu}\ell) + y_{7A}(\overline{s}\gamma_{\mu}d)(\overline{\ell}\gamma^{\mu}\gamma_{5}\ell) \\ + y_{S}(\overline{s}d)(\overline{\ell}\ell) + y_{P}(\overline{s}d)(\overline{\ell}\gamma_{5}\ell) \\ + y_{T}(\overline{s}\sigma_{\mu\nu}d)(\overline{\ell}\sigma^{\mu\nu}\ell) + y_{\tilde{T}}(\overline{s}\sigma_{\mu\nu}d)(\overline{\ell}\sigma^{\mu\nu}\gamma_{5}\ell) \\ \text{(comprises all possible structures)} \end{split}$$

Two photons		CPC	$0^{++}(2^{++})$
$K^0 - \overline{K}^0$		CPV	1
Vector	<i>y</i> _{7V}	CPV	1
Axial-Vector	<i>y</i> _{7A}	CPV	$1^{++}, 0^{-+}$
Pseudoscalar	y_P	CPV	0^{-+}
Scalar	y_S	CPC	0++
Tensor	y_T	CPV	1
Pseudotensor	$y_{ ilde{T}}$	CPC	1+-

Mescia, Trine, C.S ('06)

If helicity-suppressed: impact for muonic modes >> than for electronic ones. If helicity-allowed: impact for muonic modes < than for electronic ones. (phase-space suppression)

 $H_{eff}(K_L \to \ell^+ \ell^-) \sim -y'_{7A} (\overline{s} \gamma_\mu \gamma_5 d) (\overline{\ell} \gamma^\mu \gamma_5 \ell) + y'_S (\overline{s} \gamma_5 d) (\overline{\ell} \ell) + y'_P (\overline{s} \gamma_5 d) (\overline{\ell} \gamma_5 \ell)$

$\underline{K_L \to \pi^0 \ell^+ \ell^-}$

1. Vector & Axial-vector operators

Arise from EEWP, extra Z, MSSM with moderate $\tan \beta$ (χ^{\pm} , H^{\pm} penguins),... In general, less sensitive than neutrino modes (~ 1/3).

Bounds for general vector and axial vector FCNC operators (i.e. arbitrary y_{7A} , y_{7V}): $0.1 \cdot 10^{-11} + 0.24B(\pi^0 e^+ e^-) \le B(\pi^0 \mu^+ \mu^-) \le 0.6 \cdot 10^{-11} + 0.58B(\pi^0 e^+ e^-)$

2. Scalar & Pseudoscalar operators

Helicity-suppressed: arise from neutral Higgs penguins at large $\tan \beta$ (similar to $B \rightarrow \mu^+ \mu^-$, but sensitive to different mass insertions).

Isidori, Retico ('02)

Helicity-allowed: arise from tree-level leptoquark interactions (RPV,...). Impact completely negligible if these operators also contribute to $K_L \rightarrow e^+e^-$.

 $\underline{K_L \to \pi^0 \ell^+ \ell^-}$

$\underline{K_L \to \pi^0 \ell^+ \ell^-}$

3. Tensor & Pseudotensor operators

Helicity-suppressed

- In the MSSM, smaller than (pseudo-)scalar operators.
- Phase-space suppressed.
- \rightarrow No visible impact.

Helicity-allowed

- Can arise from tree-level leptoquark interactions.
- No bound from $K_L \rightarrow \ell^+ \ell^-$.
- Even if similar interactions included for neutrino modes,

 $(\overline{s}\sigma_{\mu\nu}d)(\overline{\nu}\sigma^{\mu\nu}(1\pm\gamma_5)\nu)$

Still a large region allowed.

Conclusion

Theoretical control over the SM Contributions

- $K_L \rightarrow \pi^0 \nu \overline{\nu}, K^+ \rightarrow \pi^+ \nu \overline{\nu}$ QCD effects are known to a high level of precision: NNLO for the dimension-six operators, with the smaller dimension-eight and LD contributions under control.

Possible improvements: Isospin breaking in the vector/scalar form-factors Better estimate of charm-quark mass Lattice study for higher-dimensional operators

- $K_L \rightarrow \pi^0 e^+ e^-$, $K_L \rightarrow \pi^0 \mu^+ \mu^-$ Long-distance effects under control, but could be improved. NLO effects for the running (sufficient).

Possible improvements: Better measurements of $K_S \rightarrow \pi^0 \ell^+ \ell^-$ for a_S Better measurements of $K_L \rightarrow \pi^0 \gamma \gamma$ for $\gamma \gamma (0^{++}, 2^{++})$

- $K_L \rightarrow \mu^+ \mu^-$ QCD effects known to NNLO (dimension six), but large uncertainty for the long-distance, two-photon piece.

Possible improvements: Better theoretical treatment of Disp($\gamma\gamma$) (?) Better measurements of $K_S \to \pi^0 \gamma\gamma$, $K^+ \to \pi^+ \gamma\gamma$ and $K_L \to \gamma^* \gamma^*$ for Sign(Disp($\gamma\gamma$))

Sensitivity to New Physics effects

Sensitive to New Physics signals and able to constrain the nature of New Physics.

- MFV: effects of ~ 20%-25% for the vv modes are possible, but MFV does its job perfectly in killing any large deviation from the SM.
 Very promising for reliably testing the MFV hypothesis.
- Large trilinear up-squark couplings: rare K decays are the most sensitive probe of this sector of the MSSM parameter space.

Essential to investigate the nature of SUSY breaking mechanism

- General New Physics: $K_L \to \pi^0 \ell^+ \ell^-$ are sensitive to, and able to discriminate among, various New Physics effects not accessible from neutrino modes. The $K_L \to \pi^0 \ell^+ \ell^-$ system important in the investigation of $\Delta S = 1$ FCNC

If LHC finds New Physics, the four modes have to be measured!

A clear signal of NP would no longer be the main goal, but the *pattern of deviations with respect to the SM would become crucial*.

Back-up

Backup 1: Sensitivity of radiative decays to the second octet LEC

Back-up

Backup 2: Sensitivities of CPV observables to A^U trilinear terms

The $K \to \pi v \overline{v}$ modes are the best probe of \mathbf{A}^U terms

Back-up

Backup 3: Anatomy of $K \rightarrow \pi v \overline{v}$ in MSSM with MFV

In the MSSM \rightarrow Largest effect in the up-squark sector since enhanced by large top-quark Yukawa: $(\mathbf{m}_{II})_{PI} = (\mathbf{a}_{A} - \cot \beta \mu^{*}) \mathbf{M}_{\mu}$

This makes $K \rightarrow \pi v \overline{v}$ an ideal test given its sensitivity to double MIA.

- Colors \Leftrightarrow enhancements of the $K_L \rightarrow \pi^0 \nu \overline{\nu}$ mode by

10%, 12%, 15%.

- Determining factors: lightest squark and chargino (~ higgsino) masses.
- Small correlation with $\Delta S = 2$
- Large correlation with Δρ
 Buras, Gambino, Gorbahn, Jager, Silvestrini ('00)

Adding the charged Higgs contribution, enhancements of ~ 20% for K^+ , ~ 25% for K_L are possible with $\tan\beta = 2$, $m_{H^+} > 300$ GeV (gets larger for smaller β).