Recent results in hyperon physics from NA48 and KTeV experiments *BEACH 2006 Lancaster, 3-7 July 2006*

Cristina Lazzeroni

University of Cambridge

On behalf of the NA48 and KTeV Collaborations

Outline

- The NA48 and KTeV detectors
- Ξ^0 beta decays
 - $\Xi^0 \rightarrow \Sigma e\nu$ branching ratio, V_{us} extraction, $g_1(0)/f_1(0)$ (NA48 2005, prelim.)
 - $\Xi^0 \rightarrow \Sigma \mu \nu$ branching ratio (NA48 2005 prelim., KTeV Phys.Rev.Lett.95-2005)
- Decay asymmetry measurements:
 - $\Xi^0 \rightarrow \Lambda \pi^0$ (NA48 NEW, prelim.)
 - $\Xi^0 \rightarrow \Lambda \gamma$ (NA48 NEW, prelim.)
 - $\Xi^0 \rightarrow \Sigma \gamma$ (NA48 NEW, prelim.)
- Ξ^0 lifetime (NA48 NEW, prelim.)
- Conclusions

The NA48 detector

CHARGED PARTICLESS:

magn. spectrometer and scintillator hodoscope $(p_T^{kick} \simeq 265 \ MeV/c)$ $\frac{\sigma(p)}{p} \simeq 0.5\% \oplus 0.009\% \ p \ (GeV/c)$ $\sigma_{x,y}^{hit} \simeq 90 \ \mu m$ $\sigma_{x,y}^{vtx} \simeq 2 \ mm$

 $\sigma_t \simeq 200 \ ps$

NEUTRAL PARTICLES:

Quasi homogeneous Liquid Krypton electromagnetic calorimeter (LKr) $\frac{\sigma(E)}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{0.10}{E} \oplus 0.5\%$ (*E in GeV*) $\sigma_{m_{\pi^0}} \simeq 1 \ MeV/c^2$

 $\sigma_{x,y} < 1.3 mm$ $\sigma_t < 300 \ ps \ above \ 20 \ GeV$

The NA48 K_S and hyperon beams

400 ${\rm GeV/c}$ secondary proton beam from the SPS T10 target, production angle of -4.2 mrad \Rightarrow polarized Ξ^0

 $N_{\bar{\Xi^0}} = (2.254 \pm 0.012_{(stat.)} \pm 0.017_{(syst.)}) \times 10^8$

The KTeV experiment

 20MHz of neutron/kaons/hyperons in a 150:50:1 ratio

- Precision drift chamber spectrometer
- Csl electromagnetic calorimeter:1 mm spatial resolution, <1% energy resolution
- Optimised for Ξ⁰ polarization measurement, half of data taken with each of the two vertical polarization states

NA48: $\Xi^0 \rightarrow \Sigma^+ e^- \nu$ decays

Reconstruct $\Sigma^+ \to p \pi^0$ and require additional electron

 $\Xi^0 \to \Sigma^+ l^- \nu$ decays are only source of Σ^+ in the neutral beam

6238 signal events, 2.4% background

BR($\Xi^0 \rightarrow \Sigma^+ e^- \nu$)

 $BR(\Xi^0 \to \Sigma^+ e^- \nu) = (2.51 \pm 0.03_{stat} \pm 0.11_{syst}) \times 10^{-4}$ (prelim.)

Source	σ_{syst} /BR (%)
Trigger efficiency	± 2.2
Detector acceptance	± 3.0
Ξ^0 form factors g_1, f_2	± 1.0
Ξ^0 polarisation	± 1.0
Ξ^0 lifetime	± 0.5
Total systematics	± 4.2
Statistical uncertainty	± 1.2

BR= $(2.71 \pm 0.38) \times 10^{-4}$ KTeV published (176 events, 1999) BR= $(2.54 \pm 0.11 \pm 0.16) \times 10^{-4}$ KTeV preliminary (625 events, 2000)

$|V_{us}|$ from Ξ^0 beta decays

Using $g_1/f_1 = 1.32^{+0.21}_{-0.17 stat} \pm 0.05_{syst}$ (KTeV 2000, 494 events), and following Garcia-Kielanowski prescription:

 $|V_{us}| = 0.208 \pm 0.006^{+0.030}_{-0.025g_1/f_1}$ (preliminary)

(neutron decay + SU(3): $g_1/f_1 = 1.267 \pm 0.035$, not used here)

 \rightarrow Agreement with SM expectation of $|V_{us}| = 0.2274 \pm 0.0021$

 \rightarrow Uncertainty dominated by experimental precision on form factor g_1/f_1

Extraction of g_1/f_1

 $g_1(0)/f_1(0)$ can be extracted from BR using $V_{us} = 0.2257$ from kaon decays (Blucher and Marciano, 2005):

 $g_1(0)/f_1(0) = 1.20 \pm 0.04_{br} \pm 0.03_{ext}$ (prelim.)

where external uncertainty includes contributions from $V_{us}{\rm ,}$ lifetime, and f_2/f_1

Agreement with exact SU(3) symmetry Favours SU(3) breaking models that leave g_1/f_1 unchanged

NA48: $\Xi^0 \rightarrow \Sigma^+ \mu^- \overline{\nu_{\mu}}$

Normalised to electron mode

Same trigger, similar selection but require one muon (+1% correction for ID-inefficiency of low momentum muons)

102 events with a background of (32 ± 3.0) : $BR(\Xi^0 \rightarrow \Sigma^+ \mu^- \overline{\nu}_{\mu}) = (2.2 \pm 0.3_{stat.} \pm 0.2_{syst.}) \times 10^{-6}$ (prelim.)

KTeV: $\Xi^0 \rightarrow \Sigma^+ \mu^- \overline{\nu_{\mu}}$

9 events found:

$$\begin{split} &\Gamma(\Xi^0\to \Sigma^+\mu^-\nu)/\Gamma(\Xi^0\to \Sigma^+e^-\nu) = (1.8^{+0.7}_{-0.5}(stat.)\pm 0.2(syst.))\times 10^{-2} \\ &\mathsf{BR}(\Xi^0\to \Sigma^+\mu^-\nu) \texttt{=} (4.7^{+2.0}_{-1.4}(stat)\pm 0.8(syst))\times 10^{-6} \\ &\mathsf{(Phys.Rev.Lett.~95,2005)} \end{split}$$

NA48: $\Xi^0 \rightarrow \Lambda \pi^0$ decay asymmetry

 $\alpha_{\Xi} \alpha_{\Lambda} (\Lambda \pi^0) = -0.282 \pm 0.003_{stat} \pm 0.028_{syst}$ (prelim.) PDG: $\alpha_{\Xi} \alpha_{\Lambda} (\Lambda \pi^0) = -0.264 \pm 0.013$

NA48: $\Xi^0 \rightarrow \Lambda \gamma$ decay asymmetry

$$dN/d\cos\Theta_{\Lambda} = N_0(1 - \alpha_{\Xi}\alpha_{\Lambda}\cos\Theta_{\Lambda})$$

 $\alpha_{\Xi} \alpha_{\Lambda}(\Lambda \gamma) = -0.439 \pm 0.013_{stat} \pm 0.038_{syst}$ (prelim.) NA48(1999): $\alpha_{\Xi} \alpha_{\Lambda}(\Lambda \gamma) = -0.50 \pm 0.13$

NA48: $\Xi^0 \rightarrow \Sigma \gamma$ decay asymmetry

 $\alpha_{\Xi} \alpha_{\Lambda} (\Sigma \gamma) = -0.438 \pm 0.020_{stat} \pm 0.041_{syst} \text{ (prelim.)}$ KTeV: $\alpha_{\Xi} (\Sigma \gamma) = -0.63 \pm 0.09 \Rightarrow \alpha_{\Xi} \alpha_{\Lambda} (\Sigma \gamma) = -0.40 \pm 0.06$

Ξ^0 radiative decays: systematics

Source	$\alpha_{\Xi} \alpha_{\Lambda} (\Lambda \pi^0)$	$lpha_{\Xi} lpha_{\Lambda} (\Lambda \gamma)$	$\alpha_{\Xi} \alpha_{\Lambda}(\Sigma \gamma)$
Trigger efficiency	± 0.001	± 0.016	± 0.024
Ξ^0 polarisation	± 0.002	-	-
Min radius DCH1	± 0.010	± 0.015	± 0.010
Track-cluster min. dist.	± 0.003	± 0.007	± 0.007
Min Z vertex	± 0.003	± 0.010	± 0.015
Min γ energy	± 0.004	± 0.008	± 0.007
Ξ^0 energy	± 0.025	± 0.025	± 0.025
Ξ^0 mass	± 0.004	± 0.010	± 0.002
MC $ au(\Xi^0)$	± 0.003	± 0.001	± 0.007
MC $mass(\Xi^0)$	± 0.002	± 0.004	± 0.003
$\Lambda\pi^0$ background	-	± 0.001	-
Total systematics	± 0.028	± 0.038	± 0.041

NA48: Ξ^0 lifetime

Large sample of $\Xi^0 \rightarrow \Lambda \pi^0$ with negligible background lifetime is measured for Ξ^0 decaying outside final collimator

Fit performed in 10 energy bins of 10 GeV, from 75 GeV to 175 GeV

Source	σ_{syst} / $ au$ (%)
Detector acceptance	± 0.30
Vertex resolution	± 0.08
Energy scale	± 0.14
Energy non-linearities	± 0.09
Ξ^0 polarisation	± 0.15
Ξ^0 mass	± 0.20
Λ lifetime	± 0.04
Total systematics	± 0.43
Statistical uncertainty	± 0.44

 $\tau(\Xi^0)/\tau_{PDG} = 1.0626 \pm 0.0044_{stat} \pm 0.0043_{syst}$

 $\tau(\Xi^0) = (3.082 \pm 0.013_{stat} \pm 0.012_{syst}) \times 10^{-10} s$ (prelim.)

Conclusions

Hyperon beta decays:

■ BR($\Xi^0 \to \Sigma^+ e^- \nu$)=(2.51 ± 0.03_{stat} ± 0.11_{syst}) × 10⁻⁴

$$|V_{us}| = 0.208 \pm 0.006^{+0.030}_{-0.025} g_1/f_1, g_1/f_1 = 1.20 \pm 0.04_{br} \pm 0.03_{ext}$$

- $BR(\Xi^0 \to \Sigma^+ \mu^- \overline{\nu}_{\mu}) = (2.2 \pm 0.3_{stat.} \pm 0.2_{syst.}) \times 10^{-6}$
- KTeV: $BR(\Xi^0 \to \Sigma^+ \mu^- \overline{\nu}_{\mu}) = (4.7^{+2.0}_{-1.4}(stat.) \pm 0.8_{syst.}) \times 10^{-6}$

Asymmetries in Ξ^0 radiative decays

- $\alpha_{\Xi} \alpha_{\Lambda} (\Lambda \pi^0) = -0.282 \pm 0.003_{stat} \pm 0.028_{syst}$
- $\alpha_{\Xi} \alpha_{\Lambda}(\Sigma \gamma) = -0.438 \pm 0.020_{stat} \pm 0.041_{syst}$

Ξ^0 lifetime:

$$\tau(\Xi^0) = (3.082 \pm 0.013_{stat} \pm 0.012_{syst}) \times 10^{-10}s$$

$|V_{us}|$ from Ξ^0 beta decays

Using the new preliminary Ξ^0 lifetime from NA48, and $g_1/f_1 = 1.32^{+0.21}_{-0.17 stat} \pm 0.05_{syst}$ (KTeV 2000, 494 events), and following Garcia-Kielanowski prescription:

 $|V_{us}| = 0.203 \pm 0.028$ dominated by g_1/f_1

(neutron decay + SU(3): $g_1/f_1 = 1.267 \pm 0.035$, not used here)

 \rightarrow Agreement with SM expectation of $|V_{us}| = 0.2274 \pm 0.0021$

 \rightarrow Uncertainty dominated by experimental precision on form factor g_1/f_1 and branching ratio

Extraction of $f_1(0)/g_1(0)$

Using the new preliminary Ξ^0 lifetime from NA48, $g_1(0)/f_1(0)$ can be extracted from BR using $V_{us} = 0.2257$ from kaon decays (Blucher and Marciano, 2005):

$$g_1(0)/f_1(0) = 1.16 \pm 0.04_{br} \pm 0.02_{ext}$$

where external uncertainty includes contributions from V_{us} , lifetime, and f_2/f_1

Agreement with exact SU(3) symmetry within 2.5 sigma

Ξ^0 and $\overline{\Xi^0}$ in 2002

From minimum bias trigger (down-scaled by 35):

Used for normalisation purposes

Experimental challenge

- Proton takes most of the hyperon momentum ⇒ proton line-of-flight close to beam pipe ⇒ low acceptance, sensitive to detector geometry ⇒ accurate MC needed
- Triggered by complex algorithm to exclude unwanted K_S and Λ decays

Data-MC comparison - μ **channel**

Data-MC comparison - *e* **channel**

Data-MC comparison - spectra

$|V_{us}|$ from Ξ^0 beta decays

 Ξ^0 beta decay similar to neutron beta decay: $\Xi^0(uss) \rightarrow \Sigma^+(uus)e^-\nu \qquad n(udd) \rightarrow p(uud)e^-\nu$

Decay rate :

$$\Gamma = G_F^2 |V_{us}|^2 \frac{\Delta m^5}{60\pi^3} \left[(1 - \frac{3}{2}\beta)(|f_1|^2 + 3|g_1|^2) \right]$$

 $\Delta m = m_{\Xi^0} - m_{\Sigma^+}$, $\beta = \Delta m/m_{\Xi^0} = 0.095$ (slightly modified by radiative corrections and q^2 dependence)

- f_1 protected by Ademollo-Gatto theorem, $f_1 \approx 1$
- $g_1(\Xi^0) = g_1(neutron)$ if SU(3) symmetry
- assume $g_2 = 0$ (non-existing second class currents)

 $\Xi^{0} \text{ lifetime from PDG}$ $\Gamma(\Xi^{0} \to \Sigma^{+} e^{-} \nu) = (8.66 \pm 0.38_{exp} \pm 0.27_{\tau}) \times 10^{5} s^{-1}$

 μ^+ ?

Ξ^0 and $\overline{\Xi^0}$ in 2002

Fiducial volume: $70GeV \le E_{\Xi^0} \le 214GeV, \quad 5m \le z_{\Xi^0} \le 50m$ $N_{\Xi^0} = (2.422 \pm 0.003_{(stat.)} \pm 0.018_{(syst.)}) \times 10^9$ $N_{\overline{\Xi^0}} = (2.254 \pm 0.012_{(stat.)} \pm 0.017_{(syst.)}) \times 10^8$ $N_{\overline{\Xi^0}}/N_{\Xi^0} = (9.31 \pm 0.05_{(stat.)} \pm 0.04_{(syst.)}) \times 10^{-2}$

anti- Ξ^0 beta decay

Check for the BR measurement of the Ξ^0 decay

Same selection as for Ξ^0

551 events with a back-ground of $(22.5 \pm 0.8)\%$:

 $BR(\overline{\Xi^0} \to \overline{\Sigma^+}e^+\nu_e) = (2.57 \pm 0.12_{stat.} \ ^{+0.10}_{-0.09 \ syst.}) \times 10^{-4}$