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In this talk I summarize a few peculiar features of CP violation in the Standard Model, focussing on the CP

violation of quarks.

1. Introduction

CP Violation and more generally the flavour
structure observed in elementary-partlcle interac-
tions still remains one of the unexplained myster-
ies in high-energy physics. In the framework of
the standard model flavour mixing and CP vi-
olation is encoded in the CKM matrix for the
quarks and in the PMNS matrix for the leptons.
However, this is only a parametrization, in which
CP violation appears through irreducble phases
in these matrices and which is up to now com-
pletely consistent with the experimental facts, at
least with what is found at accelerator experi-
ments.

On the other hand, the CP violation in the
standard model is a small effect. In particular
it is too small to create the observed matter-
antimatter asymmetry of the universe, for which
CP violation is an indispensable ingredient. The
standard model is a local, Lorentz-covariant and
causal quantum field theory, which means that
we shall assume strict CPT conservation. Keep-
ing this in mind, let us recall here the criteria
established by Sakharov [1] for the appearance of
a baryon-antibaryon asymmetry:

e There have to be baryon Number violating
interactions:

L(Anga #0) £0.

e CP has to be violated in order to have dif-
ferent reaction rates for baryons and an-
tibaryons

ﬁ(ATLBar #0) AnBar;éO) o
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e The universe had to be out of thermal equi-
librium, since in thermal equilibrium CPT
invariance is equivalent to CP invariance.

Although the standard model has all these in-
gredients, it turns out that the observed matter-
antimatter asymmetry cannot be accommodated
by the standard model, and one reason is that CP
violation turns out to be too small.

Furthermore, CP violation (and with it the
complete flavour structure) of the Standard
Model is quite peculiar and fully compatible with
the data from particle accelerators. In the follow-
ing I will focus on the CP violation of quarks and
point out a few of these features which follow from
the parametrization with the CKM matrix and
which have a specific phenomenology and which
are not easily reproduced by generic new physics
models.

2. CP Violation in the Standard Model

In general, CP violation emerges in Lagrangian
field theory through complex coupling constants,
the phases of which are irreducible!. Schemati-
cally this means

L= 0a;0;+hc.  (CP)O;(CP) =0].(1)

In the Standard Model there is only a single ir-
reducible phase which is induced by the Yukawa
couplings. It has become a general convention
to define the phases of the fields such that the

IThis means that the phases cannot be removed by phase
redefinitions of the fields.
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Figure 1. The standard unitarity triangle.

irreducible imaginary part appears in the CKM
Matrix

Voxm # Viku (2)

In fact this is already one of the peculiarities of
CP violation in the standard model, where the
unique source of CP violation only appears in the
charged current couplings.

There are infinitely many possible parametriza-
tions of the CKM matrix in terms of three an-
gles and a phase. One possibility, the PDG
parametrization, may be written as a product of
three rotations and a phase matrix in the form

c12 s12 O €13 0 13
Uig=| —sia2 cija O , Uz = 0 1 0 ,
0 0 1

—s13 0 «e13
1 0 0 10 0
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where s;; = sin;; etc. are the sines and cosines
of the rotation angles. The standard parametriza-
tion is obtained by

Vexkm = U23U§U13U5U12 (3)

In this parametrization large phases appear in V4
and V,;, which are small matrix elements as far as
their absolute value is concerned.

The unitarity of Vogu is usually depicted by
the unitarity triangle. There are in total six uni-
tarity relations (aside from the normalization re-
lations for the rows and columns), which may be
depicted as traingles in the complex plane. How-
ever, due to the hierarchy of the CKM matrix
elements there are only two triangles with com-
parable sides which coincide to leading order in
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Figure 2. The box diagramms mediating AF = 2
transitions in the standard model.

the Wolfenstein expansion. This triangle is shown
in Fig. 1

An invariant measure for the size of CP viola-
tion is the area of this triangle. In fact, on can
show that all traingles have to have the same area
due to unitarity. The area of all these triangles is
proportional to the quantity

ImA

MV, Vi Vi Vi (4)

2 .
= C12512€13513523C23 Sl 013

It is interesting to note that the maximal possi-
ble value for this quantity for some “optimized”
values of the angles and the phase is
S = —— ~ 0.1 (5)
max 6\/§ .
while the value realized in nature is several or-
ders smaller, dexp ~ 0.0001. This quantifies the
statement that CP violation is a small effect.
Finally we note that CP violation vanishes in
the case of degeneracies of up or down quark
masses, in which case one may rotate away the
CP violating phase. It has been noted by Jarlskog
[2] that the following quantity is a clear indication
for the presence of CP violation:

J = Det([M,, Mg)) (6)
2 ImA (my, — me) (Mg, — my)(me — my)

X (mg —mg)(mg — mp)(ms —my)

In second order in the weak interactions there
is the possibility of flavour oszillations. The box-
diagramms shown in fig. 2 can mediate transitions
between By < By, Bs < B, K K and also
between D) <> B'

For later use we note that the mixing amplitude
for By — B, mixing is proportional to the phase
factor exp(2if3), while the phase in B,— B, mixing
is negligibly small in the standard model. In the
kaon system, the short distance contribution to
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Figure 3. Feynman Diagram leading to an electric
dipole moment for the up quark.

mixing is also proportional to exp(2i3), while the
mixing in the up quark sector (D — D mixing) is
heavily GIM suppressed.

The Flavour structure and the pattern of CP
violation in the Standard Model is quite peculiar.

Here I list a few of these peculiarities:

Strong CP violation:

The QCD sector of the standard model can also
contain a CP violating interaction of the form

Latrons P = Q%Tr {E : B’} (7)

where E and B are the chromo-electric and the
chromo-magnetic field strenghts. The electric
dipole moment of the neutron tells us that the
coupling # has to be extremely small. It has been
suggested by Pecchei and Quinn [5] to introduce
an additional symmetry to explain # = 0, but in
these scenarios a new light pseudoscalar particle,
the so-called axion appears for which we do not
have any experimental evidence. It is fair to say
that the strong CP problem is still unsolved.

Flavour Diagonal CP violation:

One of the most peculiar features of CP viola-
tion in the standard model is the enormous sup-
pression of flavour diagonal CP violation. Assum-
ing that the CKM matrix is the only source of CP
violation, it is easy to see that an electric dipole
moment of a quark can be induced only at the
two loop level at least, evaluating a diagram as
the one shown in fig. 3.

It has been shown by Shabalin [3] that the sum
of all the two loop diagrams lead to a vanishing
electric dipole moment for the quarks, and a non-
vanishing contribution requires at least one more
loop, which can be an additional gluon. Hence

naive counting leads to the following estimate of
the electric dipole moment of the neutron

2 2
de ~ e @ Gy m

7 (1672)2 M3,

ImA 2 ~ 1073%ecm  (8)

where the factor m?/M3, originates from the
GIM suppression, A encodes the necesary CKM
factors and p is a typical hadronic scale which we
set to u = 300 MeV. This has to be compared to
the current experimental limit which is [4]

dexp < 3.0 x 10”*%e cm

Similar statements hold for other flavour diago-
nal and CP violating observables, and from the
experimental side this strong suppression of these
effects is supported.

Strong Suppression of CP violation in
the up-quark sector:

The pattern of mixing and CP violation in the
standard model is determined by the GIM mech-
anism. This means in particular, that the effects
for the up, charm and the top quark are severely
suppressed, since the mass differences between
the down-type quarks are small compared to the
weak boson masses. Furthermore, the mixing an-
gles of the first and second generations into the
third are small, which means that charm physics
is basically a “two family” problem. Since CP
violation with only two families is not possible
through the CKM mechanism, this results in a
strong suppression of CP violation in the charm
sector. Again this fact seems to be supported by
experiment.

3. Phenomenology of CP Violation

In the following we shall concentrate on CP
violation in the decays of particles. In general,
decays are mediated by an effective interaction
consisting of a sum of local operators O;

Gr
Hes = —£3 G0 9
it ﬂ; (9)

where in the standard model C; are coefficients
containing the CKM factors (including possible



phases) and the contributions from the QCD run-
ning from the weak scale down to the typical scale
of process. Furthermore, in the standard model
we have n = 10, where the operators i = 1,2
are called tree operators, i = 3,..6 are the QCD
penguins and i = 7, ...10 are the electroweak pen-
guins.

CP violation occurs through complex phases of
the C; in the following way. Consider an ampli-
tude for a decay of a B meson into some final
state f, with two contributions

A(B — f) = a1 + A2a9 (10)

where the \; are complex coupling constants and
a; are hadronic matrix elements (B|O;|f). The
amplitude of the CP conjugate process is obtained
by conjugating the couplings \;, while the phases
of the the hadronic matrix elements remain the
same due to CP invariance of strong interactions.
The CP asymmetry is given by

Acp o T(B—[f)-T(B—J)
= 2Im[AA3] Im[a;a) (11)

Thus a CP asymmetry requires imaginary parts
of the coupling constants, but also a strong phase
difference between the hadronic matrix elements.

The neutral flavoured mesons can decay into a
CP eigenstate. In this case we can have a strong
phase difference from a different origin. Since the
two mass eigenstates in the neutral flavoured me-
son systems (Bg, B, K° and D°) have differ-
ent mass eigenvalues, the time evolution creates
a phase such that

Im[aia3] ~ sin(Amt) (12)

where Am is the mass difference between the two
eigenstates. Thus there will be a time dependent
CP asymmetry which takes the form

C cos(Amt) — S sin(Amt)
cosh(AI't/2) + Dsinh(AT't/2)

Acp(t) = (13)
where the coefficients satisfy C? + S? + D? = 1.

The problem in obtaining quantitative predic-
tions for the CP asymmetries lies in our inabil-
ity to perform a first principles calculation of the
hadronic matrix elements. Thus we have to re-
fer to approximate methods which fall into three
classes which I shall briefly describe.
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Flavour Symmetries:

Isospin or more genrerally flavour SU(3) may
be used to relate matrix elements for different
processes [6]. While isospin is believed to be a
good symmetry which is broken only by electro-
magnetism and the mass difference between the
up and the down quark, the situation is worse for
U- and V-spin which are the two other possible
choices of the SU(2) subgroup of SU(3), since the
mass of the strange quark is significantly higher
than the one of the up and the down quark.

The breaking of flavour SU(3) is not eas-
ily quantified. only for factorizable amplitudes
SU(3) breaking is included by a factor of fr/fk
which also give the approximate size of the effects
which have to be expected. However, the intrinsic
uncertainties emerging from using flavour symme-
tries are hard to estimate.

Flavour symmetry arguments are often supple-
mented by arguments based on diagram topolo-
gies: A rearrangement of color indices will result
in a color-suppression factor 1/No = 1/3, an an-
nihilation topology (i.e. a diagram where two
quarks in a meson have to annihilate) results in a
suppression by a factor far/mpr, where fp and
mys are the decay constant and the mass of the
meson M. Furthermore, a contraction of quark
lines involving a quark loop (penguin contraction)
involves a loop factor, the perturbative value of
which is 1/(1672) but is generally expected to be
between this value and unity.

This approach, which is completely model inde-
pendent, allows us to have some semi-quantitative
insight into rates and CP asymmetries, however,
in many applications the uncertainties of the or-
der of tens of percent are hard to estimate.

QCD Factorization and SCET:

It has recently been pointed out that in the
limit of infinite heavy quark mass one may fac-
torize the amplitudes of exclusive non-leptonic
two body modes as sketched in fig. 4[7]. Thus in
the infinite mass limit the amplitude can be ex-
pressed in terms of a non-perturbative (soft) form
factor, the non-pertutbative wave functions of
the hadrons and a perturbatively calculable hard
scattering kernel T'. This limit may be formulated
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Figure 4. Sketch of QCD factorization

as an effective field theory, the soft collinear ef-
fective field theory (SCET) .

The most interesting observation from QCD
factorization is that the strong phases in non-
leptonic heavy hardon decays are perturbatively
calculable to leading order, and thus are predicted
to be small: Strong phases are either of order
as(m) or suppressed by powers of 1/m. However,
the quantitative agreement with data is still not
good, indicating sizable corrections of subleading
orders in 1/m. Although the number of sublead-
ing non-perturbative parameters is large, QCD
factorization still provides a systematic approach
to exclusive non-leptonic decays.

QCD (Light Cone) Sum Rules:

QCD sum rules are a well established method
for the estimate of hadronic matrix elements.
They rely on parton hadron duality and on the
analyticity of the amplitudes. For the case of
two-body non-leptonic B decays involving light
mesons in the final state the so-called light cone
sum rules are applied [8], where one of the light
mesons is represented by its light cone wave func-
tion, while the decaying meson and the other light
meson is interpolated by appropriate currents.
This type of sum rules has been formulated re-
cently directly in SCET.

It is interesting to note that the results from
light-cone QCD sum rules quantitatively agree
with the ones from QCD factorization. In par-
ticular, the statement about weak phases is the
same in QCD sum rules.

In summary, the main obstacle to calculate CP
violation in hadronic decays and thus to relate the
measurements to the fundamental parameters is
the evaluation of the hadronic matrix elements,
in particular of their weak phases. Only in a few

cases precise predictions are possible.

4. CP Violation and “New Physics”

Currently there is no convincing idea which ex-
plains flavour. Even in grand unified theories
flavour is usually implemented by triplication of
the spectrum, which will not give any explana-
tion.

Most scenarios of “new physics” involve addi-
tional degrees of freedom, in particular, many
models involve an extended Higgs sector. This
in general implies additional couplings which may
carry irreducible phases, i.e. to additional sources
of CP violation. This additional CP violation
generically also appears in flavour diagonal pro-
cesses, in contradiction with the observed sup-
pression of the e.g. electric dipole moments of
particles. Furthermore, flavour changing neutral
currents may appear, in some models even at tree
level.

The pattern of CP violation and flavour
parametrized by the CKM Ansatz is very special
and in complete agreement with the observations
in particle physics. For this reason, scenarios
of “new physics” are thus formulated often with
“minimal flavour violation” (MFV) which means
that any flavour structure can be reduced to the
Yukawa couplings and the CKM matrix. This
makes these models consistent with present ob-
servations but does not explain the phenomenon
of flavour.
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