Simulating Quartic

James L Pinfold for the Quartic Group

James L. Pinfold FP420 Meeting October 2005

- Each element of Quartic is comprised of a square section fused silica rod.
- Rod cross-section is 2 x 2 mm
- Maximum rod length is 10mm
- Each rod is coated with vacuum deposited aluminium as a reflector and to provide optical isolation for each rod.

GEANT4 Simulation

- A GEANT4 simulation is well underway (see GEANT4 produced graphics above.
- The detector simulation includes:
 - Tracking of Cerenkov photons to the MCP-PMT through the medium.
 - Wavelength dedendent refractive index of the medium
 - Wavelength dependent attenuation of the photons
 - Wavelength dependent reflectivity of the aluminium reflector
 - Timing of photons from generation to the MCP-PMT
 - The effects of coupling grease (if necessary)

Simulating the MCP-PMT

- Arrival time at the face of the MCP-PMT recorded
- Implement wavelength dependence of the photo-cathode quantum efficiency.
- Simulate PMT transit-time jitter by adding a normally distributed random time jitter with the appropriate standard deviation and to the arrival time
- Simulate the layout of the anode pad readout of the MCP-PMT.
- We make the approximation that the MCP-PMT output voltage having reached a certain level triggers a discriminator this level corresponds to a certain number of photons having arrived.

Typical MCP-PMT (Burle 85001-501

GENERAL

Parameter		Value	Unit
Spectral Response		185 to 660	nm
Wavelength of Maximum Response		400	nm
Photocathode Material		Bialkali	
Window	Material	UV Grade Fused Silica	
	Thickness	2.0	mm
Multiplier	Structure	MCP (25µm pore, 40:1 L:D)	
	Number of Stages	2	
Anodes Number		4 (2×2)	
	Size / Pitch	24.4 / 25.4	mm
Voltage Divider Resistance		12	MΩ

Characteristics (at 25 °C)

Parameter		Min.	Тур.	Max.	Unit
Cathode Sensitivity	Luminous		55		μA/Lm
	Blue (with CS-5-58 filter)	6.0	8.0		μA/lm-b
Anode Sensitivity	Blue (with CS-5-58 filter)		5.5		A/Im
Gain		1×10 ⁵	7×10⁵		
Anode Dark Current, Total (@ 10⁵ Gain)			1	5	nA
Time Response	Anode Pulse Rise Time		0.3		ns
	Anode Pulse Width (FWHM)		1.8		ns
Pulse Linearity at 5% Deviation			300	-	mA
Anode Uniformity			1:1.5		

James L. Pinfold FP420 Meeting October 2005

Timescale

- Detector simulation has been essentially completed
- On November 14th work will continue with the inclusion of the MCP-PMT stage
- By the end of November we should have a full simulation of the QUARTIC for various scenarios
- We will the need to validate the simulation against an prototype.