QUARTIC

Preliminary UTA drawing of Mike's concept for a fast time resolution Cerenkov counter:

Initial design uses $2 \mathrm{~mm}^{2}$ rods, gives x segmentation: could help with multiple proton events (enough light?)

Microchannel plate PMT
A. Brandt/M. Albrow

Cerenkov light in quartz:

$$
\begin{aligned}
& \cos \theta_{\mathrm{ch}}=\frac{1}{\beta \mathrm{n}} ; \text { we have } \beta=1 \Rightarrow \cos \theta_{\mathrm{ch}}=\frac{1}{\mathrm{n}} \\
& \mathrm{n}(\lambda)=1.54 \text { for quartz ... for sim. use } \mathrm{n}(\lambda) \\
& \theta_{\mathrm{ch}}=49.5^{\circ} \ldots \text { put bars at this angle or optimum }(\lambda) \\
& \text { PDG }: N_{p e}=\mathrm{L} \frac{\alpha^{2} Z^{2}}{r_{e} m_{e} c^{2}} \int \varepsilon_{c o l l}(E) \varepsilon_{\mathrm{det}}(E) \sin ^{2} \theta_{c h}(E) d E \\
& \Rightarrow N_{p e} \approx 90 \mathrm{~cm}^{-1} \mathrm{~L}\left\langle\sin ^{2} \theta_{c h}\right\rangle=52 \mathrm{~cm}^{-1} \mathrm{~L}
\end{aligned}
$$

Proposed design $\mathrm{L} \sim 4 \mathrm{~cm}$ so ~ 200 pe but each $2 \times 2 \mathrm{~mm}$ bar effectively $2.6 \mathrm{~mm} \rightarrow \sim 13$ pe (but this assumes 27% QE and whole cone of light!) What happens if go to 4 x 4 (6 x 6) mm bars?
Note: 6x6 is standard pixel on Burle 85011 MCP
Simulation in progress at UTA, Alberta: Light at photocathode fn(time), with folded Cerenkov light, transmission, quantum efficiency all fn (wavelength). Getting vendor quotes: \$3-4k for fused silica; \$4.3K for Burle MCP

Jobs and choices:

1. Design

Concept: bars, plates, block, fibers, other? (GASTOF Louvain)
Simulations: full Geant (Yushu Yao, Alberta), ray tracing (Noyola, Harenza
UTA)
Optimization
2. Radiator

Fused silica, quartz other?
Surface treatment: aluminization (can be done at Fermi, but not polishing)
3. Photodetector

Microchannel plate (MCP): Hamamatsu, Burle, other?
Avalanche photodiode (APD) ? other ? contacted Swain
4. Assembly and mounting (Alberta+20\% UTA?)

Engineering and manufacture (including motion control)
5. Electronics (Alberta?)

Front end
Read-out
Needs investigation
HV and slow controls

Jobs and choices (continued):

6. Software

Controls (?)
Readout (Alberta)
Data analysis (UTA+Alberta)
7. Test Beam

Integration with $\mathrm{BTeV} / \mathrm{CMS}$ test setup
Effort
MOU

GOAL: test > = two identical counters in Fermilab test beam in June 2006.

> Funding: some available from Alberta, UTA+FNAL requests in progress

