

muon

tt production cross section & search for resonances at the Tevatron

Jet 1(b)

proton beam-

Roberto Rossin, University of Florida

On behalf of the CDF and DØ collaborations

neutrino 🖗

electron 💰

R. Rossin Top2006 Coimbra

Jet 2 (b)

tt production

R. Rossin Top2006 Coimbra

tt decays

What do we know experimentally about cross section? We measure it in all channels:

- combine
 - smaller uncertainty
- consistency across channels
 - test for possible New Physics contamination (e.g. $t \rightarrow H^+b$)
- consistency with measured mass
 - tests for possible New Physics production mechanisms (e.g. via Z')

Measure in different ways Rossin Top2006 Coimbra

Cross section in dilepton channel

Signature

- 2 high P_T leptons (ee, $\mu\mu$, $e\mu$)
 - Ev sel: 2 tracks matching objects in calorimeter or $\boldsymbol{\mu}$ chambers
- Large missing ET
 - E_T^{miss}>25÷40GeV (*)
- 2 b-jets
 - \geq 2 jets with E_T>20GeV
 - no b-tagging (*)

Backgrounds

- Physics: $Z \rightarrow \tau \tau \rightarrow II'$ and WW, WZ production (ee, $\mu\mu$, $e\mu$)
- "Fake" leptons from $W \rightarrow I_V$
- Drell-Yan

Dilepton channel

Ev sel: 2 well identified leptons

• ||:

- $E_T^{miss} > 35 \div 40$
 - remove $Z/\gamma^* \rightarrow II$
- ee:
 - Z veto [80-100GeV]
 - Sphericity>0.15
 - reject gluon radiation (planar)
- μμ:
 - χ^2 cut in Z $\rightarrow \mu\mu$ hypothesis
 - $\Delta \phi(E_T^{miss}, \mu_1) \le 175^{\circ}$
 - remove nonreconstructed jet
- eµ:
 - $H_T^{\ell}=p_T^{\ell}+\Sigma(p_T^{j})>122GeV$
 - remove $Z \to \tau^{\scriptscriptstyle +} \tau^{\scriptscriptstyle -}$ and dibosons
 - NO E_T^{miss} cut

Events	ee	μμ	eμ	Total
Bkg	1.0±0.3	1.3±0.4	4.5±2.2	6.8±2.2
Data	5	2	21	28

$\sigma(t\bar{t}) = 8.6 \pm_{2.0}^{2.3} (stat) \pm_{1.0}^{1.2} (syst) pb$

Dilepton channel: eµ with b-tagging

R. Rossin Top2006

Useful for study of top properties

 $\sigma(t\bar{t}) = 11.1 \pm \frac{5.8}{4.3} (stat) \pm 1.4 (syst) pb$

158 pb⁻¹

Dilepton channel: lepton+track

Increase acceptance by loosing cuts

- 1 lepton with strict ID requirements:
 - well reconstructed track
 - isolated signature on calorimeter
 - e: shower profile
 - μ: MIP
- 2nd lepton:
 - well reconstructed and isolated track
 - NO calorimeter requirements
- Recover acceptance from uninstrumented regions
- Accept single prong τ had decay

Dominant background: DY $Z/\gamma^* \rightarrow \ell \ell$, evaluated from data and MC adds major contribution to systematics ($\sim 10\%$)

```
\sigma(t\bar{t}) = 9.9 \pm 2.1(stat) \pm 1.3(syst)pb
                                                 13033III - 10p2
```

Event count per jet bin

Dilepton channel: global fit

Increase acceptance by loosing cuts

>Look into the most "natural" distribution: N_{jets} VS E_T^{miss} .

Fit for different contributions to the sample: e.g, in eµ sample fit with ttbar, WW, $Z \rightarrow \tau \tau$ and extract their cross sections.

Same technique applied to ee and $\mu\mu$ sample

Major systematics due to Jet Energy Scale (JES) & missing E_T modeling and jet multiplicity (ISR/FSR)

 $\sigma(t\bar{t}) = 8.6 \pm \frac{2.5}{2.4}$ (stat) ± 1.1 (syst) pb

 $\sigma(WW) = 12.6 \pm_{3.0}^{3.2} \text{(stat)} \pm 1.3 \text{(syst)} \text{pb} \iff \text{Th}: 12.5$

 $\sigma(Z \rightarrow \tau\tau) = 233 \pm_{42}^{45} \text{(stat)} \pm 17 \text{(syst)} \text{pb} \leftrightarrow \text{Th}: 250.5$

CDF Preliminary (200 pb⁻¹)

Lepton+jets

- Signature:
 - 1 high PT lepton
 - P_T>20 GeV
 - 4 jets
 - \geq 3 jets with E_T>15GeV
 - Large missing ET
 - E_T^{miss}>20GeV
- Backgrounds:
 - W+jets mainly
 - also QCD (=fake lepton), diboson, single Top

✓ Higher yield & background wrt dilepton

✓ Sample used for other measurements:

t mass, W helicity..

- Branching Ratio ~22%
- Total acceptance wrt tt ~5%

Lepton+jets: Approaches

Counting experiments

- b-tagging: secondary vertex, displaced tracks, leptonic decays of B-hadrons
 - ➢ S/B=2÷4
 - double-tagging !
 - S/B>10

Fit to event kinematics >b-tagging fit the E_T^{j1} >NO b-tagging i.e. likelihood fit to Ht, A, C... i.e NN Ht

Lepton+jets: b-tagging

Major systematics sources: •W fractions •b-tagging efficiency •trigger efficiency.

40

60

Jet p_T (GeV)

 $\sigma(t\bar{t}) = 8.1 \pm 1.3 pb$

0.4

0.2

20

Lepton+jets: b-tagging

in Top2006 Coir

Discriminant

Lepton+jets: kinematic analyses

14

Lepton+jets: MET+jets+b-tags

Selection. 1 b-tag:

- <u>Veto</u> on lepton (looking into the dumpster!!)
 - to include also τ decays
 - to recover part of e, $\boldsymbol{\mu}$
- $\Sigma E_T^{jets} > 125 GeV$
- \geq 4 jets with E_T>15GeV
- Large missing E_T
- $\Delta \Phi(E_T^{\text{miss}}, \text{Jet}) \ge 0.4 \text{rad}$
 - to suppress QCD

Background from data

Major systematics:

- trigger efficiency
- tagging efficiency

$$\sigma(t\bar{t}) = \frac{N_{obs}^{tag} - N_{exp}^{tag}}{\varepsilon_{kin} \times \varepsilon_{tag} \times L} = 5.9 \pm 1.1 \pm_{1.1}^{1.6} \text{pb}$$

Counting experiment Count <u>b-tags</u>

CDF Run II preliminary, L=311 pb

all-hadronic channel

✓Largest BR (~45%)

✓Fully reconstructed events

- Signature:
 - Large total E_T
 - $\Sigma E_T^{jets} > 125 GeV$
 - High jet multiplicity
 - • \geq 6 jets with E_T>15GeV
 - Low missing ${\rm E}_{\rm T}$
 - No isolated leptons

✓ Background:

– Overwelming QCD
background. S/B~1/3500
(after specifically designed trigger)

➤To remove it:

- Kinematic selection
- b-tagging

all-hadronic channel

- kinematic selection to optimize $S/\sqrt{(S+B)}$:
 - $\Sigma E_T \ge 280 \text{GeV}$
 - Centrality≥0.78
 - Aplanarity+0.005 $\cdot\Sigma_3 E_T \ge 0.96$
- require >1b-tag
 - S/B~1:5

Counting tags, likelihood calculation

CDF Run II preliminary, L=311 pb⁻¹

all-hadronic channel

Global tt xsec results. Top mass

Top mass affects: •Theoretical prediction •Experimental measurement: – e.g.: acceptances When making a measurement you assume a specific mass. Changing

the mass will change the central values as well as the errors.

CDF assumed m_t =178GeV for all the analysis presented. DØ assumed m_t =175GeV. CDF results have been recalculated at m_t =175GeV for the following comparison.

Global tt xsec results

Good agreement with SM prediction.

With new data will be able to reach 10% uncertainty

 $\sigma(p\overline{p} \rightarrow t\overline{t}) \ (pb)$

YAY/

-01

tt resonance production searches

- No resonance production is expected in SM
- Why is Top so heavy ?
 - Indication of coupling to New Physics ?
 - Third generation 'special' ?
- Theoretical models predict it
 - Leptophobic topcolor assisted technicolor
 - Couples predominantly to third generation quarks

Harris, Hill, Parke hep-ph/9911288

- And many others...

٠

Top production is relatively unknown experimentally, needs investigation

Where to look?

Data sample:

Lepton + Jets overall best choice for M_{tt} reconstruction

Where, in I+jets:

Since we are looking for resonant tt production, the natural choice is to look into the tt invariant mass spectrum.

Issues with a direct inv mass reconstruction :

- Neutrino is elusive
 - Longitudinal momentum not known
 - Transversal momentum indirectly reconstructed (E_T^{miss}),not very precise
- Jet energy is loosely correlated with the parton energy
 - Limited intrinsic detector resolution
 - − Extra jets (ISR/FSR) \Rightarrow difficult tt jets identification

SUMMARY:

4 (parton energies) + 3 (v momenta) = 7 unknowns

History: Run I Results

Phys. Rev. Lett. 92, 221804 (2004)

History: Run I Results

Phys. Rev. Lett. 85, 2062 (2000)

tt invariant mass reconstruction

Unknown quantities : 4 quark momenta and neutrino 3-momentum

Solution : find most likely values based on jet energy resolutions And kinematical constraints like W, Top masses using a kinematic fit

Run II Results

R. Rossin Top2006 Coimbra

tt invariant mass reconstruction

Т

Assume the top mass to be known, Mtop = 175 GeV For each event, for each combination, build the posterior probability density:

$$\pi^{post}(p_b, p_{\bar{b}}, p_q, p_{\bar{q}}, \vec{p_{\nu}} | \vec{j_1}, \vec{j_2}, \vec{j_3}, \vec{j_4}, \vec{p_l})$$

$$\pi^{post}(\{p\} | \{j\}) \propto \pi^{prior}(\{p\}) \cdot T(\{j\} | \{p\})$$

$$\pi^{post}(\{p\} | \{j\}) \propto \pi^{prior}(\{p\}) \cdot T(\{j\} | \{p\})$$
Parton-to-jet transfer functions
Probability of measuring jet energy j
knowing parton energy p
$$d\sigma(\vec{p_i} | p_k, p_l) = \frac{|\mathcal{M}|^2}{4E_k E_l | v_k - v_l|} \cdot (2\pi)^4 \delta^4(p_k + p_l - \sum_{i=1}^6 p_i) \cdot \prod_{i=1}^6 \frac{d^3 \vec{p_i}}{(2\pi)^3 \cdot 2E_i}$$
The posterior allows the derivation of the event Mtt probability density:

$$\rho^{post}(x|\{j\}) = \int \{dp\}\pi^{post}(\{p\}|\{j\}) \cdot \delta(x - M_{t\bar{t}}(\{p\}))$$

We 'project' the multidimensional posterior on one 'dimension' of our choice, Mtt in this case

We average over all jet-parton assignments allowed by b-tagging information The mean Mtt value defines the 'reconstructed' event Mtt.

$$\mathcal{M}_{t\bar{t}} = <\rho^{post}(x|\{j\}) >$$

Run II Results

KS test, SM only

Run II Results

KS test, SM + X(500GeV) at most probable x-sec 2pb

R. Rossin Top2006 Coimbra

Summary Resonance

	Run I	Run II
D0	Method : Kinematical fit B-tags : any Limit : 560 GeV	Method : Kinematical fit B-tags : 1 or more Limit : 680 GeV
CDF	Method : Kinematical fit B-tags : any Limit : 480 GeV	Method : Matrix Element B-tags : any Limit : 700 GeV

- No evidence for a new resonance found, but....
- Cross section limits were improved compared to Run I
- Leptophobic Z' model :
 - New limit $M_{Z'} > 700 \text{ GeV}$ for $\Gamma_{Z'} = 0.012 M_{Z'}$

Expected sensitivity for the future

We are going to add data in few... days! Stay tuned

Conclusions

We are testing SM production more and more stringently:

- Measuring cross section absolute value at ~15%
 - measuring branching ratios
- Testing for specific non-SM production mechanisms such as resonances at the <10% level of contamination.
- Uncertainties are going to be reduced to the level of the theoretical uncertainty
 - Systematics need to be improved, usually more data helps here too!!

Tevatron is running well, more data are coming...

Conclusions

We are testing SM production more and more stringently:

- Measuring cross section absolute value
 - measuring branching ratios
- Testing for specific non-SM production mechanisms such as resonances at the <10% level of contamination.
- Uncertainties are going to be reduced to the level of the theoretical uncertainty
 - Systematics need to be improved, usually more data helps here too!!

Tevatron is running well, more data are coming...

...not time to go to LHC. (yet)