Precision Measurement of the Top Quark Mass in the Lepton+Jets Channel

Jochen Cammin

University of Rochester

On behalf of the CDF and $\mathsf{D}\ensuremath{\emptyset}$ collaborations

01/12/06

- Tevatron, CDF, and DØ
- CDF: Template, DLM, Decay Length
- DØ: Template, Ideogram, Matrix Element
- Jet energy scale issues
- Summary + Outlook

Tevatron Run II

Accumulated luminosity

Feb.02 May.02 Aug.02 Nov.02 Feb.03 May.03 Aug.03 Nov.03 Feb.04 May.04 Aug.04 Nov.04 Feb.05 May.05 Aug.05 Nov.05 Feb.06 May.06

More than 1 fb^{-1} on tape!

CDF and DØ

CDF

DØ

- Precise tracking and vertexing new/bigger silicon/fiber tracker, new drift chamber, TOF
- Upgraded calorimeter and muon systems
- Upgraded DAQ/trigger

Decays of the top quark

dilepton channel

- BR ~5%:
 2 jets, 2 charged leptons, missing energy from 2 ν's
- cleanest channel

lepton+jets channel

- BR ~30%:
 4 jets, 1 charged leptons, missing energy from 1 *v*'s
- compromise between statistics and background

all-jets channel

- BR ~45%:
 6 jets 2 ν's
- large backgrounds

All channels include 2 b-jets

General procedure

- Select signal-like events (isolated lepton, missing energy, ≥ 4 jets)
- Reduce background (mainly W+jets and QCD):
 - additional cuts
 - b-tagging
- Seconstruct the final state (e.g., χ^2 fit). (Calculate masses m_{qqb} and $m_{\ell\nu b}$.)
- Extract top-quark mass. Templates, likelihoods, ...

Important step in recent measurements: Use in-situ m_W constraint for jet energy scale calibration.

CDF: Template Method, 318 pb⁻¹

Uses in-situ m_W constraint to get jet energy scale (JES).

Event selection:

- 1 e or μ with $p_T > 20 \text{ GeV}$
- $E_T^{\text{miss}} > 20 \text{ GeV}$
- \geq 3 jets $E_T > 15$ GeV 4th jet with $E_T > 8$ GeV
- 0, 1 or 2 b-tags

165 candidates subdivided into 4 sets:

- 0 b-tag: 4 jets E_T > 21 GeV high combinatorics; larger background
- 1 b-tag (tight): 4 jets E_T > 15 GeV
- 1 b-tag (loose): 3 jets $E_T > 15$ GeV, 4th jet 8 GeV $< E_T < 15$ GeV
- 2 b-tags: 3 jets E_T > 15 GeV, 4th jet E_T > 8 GeV reduces combinatorics; best mass resolution; low background

Category	2-tag	1-tag(T)	1-tag(L)	0-tag
expected S:B	10.6:1	3.7:1	1.1:1	N/A
No. events	25	63	33	44

Background estimates

Source	Expected bkg.				
	2-tag	1-tag (T)	1-tag(L)		
Non-W(QCD)	$0.31 {\pm} 0.08$	$2.32{\pm}0.50$	$2.04{\pm}0.54$		
$W bar{b} + W car{c} + W c$	$1.12{\pm}0.43$	$3.91{\pm}1.23$	$6.81{\pm}1.85$		
W+light jets	$0.40 {\pm} 0.08$	$3.22{\pm}0.41$	$4.14{\pm}0.53$		
WW/WZ	$0.05 {\pm} 0.01$	$0.45 {\pm} 0.10$	$0.71 {\pm} 0.13$		
Single top	$0.008 {\pm} 0.002$	$0.49{\pm}0.09$	$0.60{\pm}0.11$		
Total	$1.89{\pm}0.52$	$10.4{\pm}1.72$	$14.3 {\pm} 2.45$		

CDF: Template Method, 318 pb⁻¹

Mass reconstruction: Event-by-event χ^2 fit for each combination.

$$\begin{aligned} \chi^{2} &= \sum_{i=\ell,4\text{jets}} \frac{\left(\hat{p}_{T}^{i} - p_{T}^{i}\right)^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{\left(\hat{p}_{j}^{UE} - p_{j}^{UE}\right)^{2}}{\sigma_{j}^{2}} \\ &+ \frac{\left(m_{jj} - m_{W}\right)^{2}}{\Gamma_{W}^{2}} + \frac{\left(m_{\ell\nu} - m_{W}\right)^{2}}{\Gamma_{W}^{2}} + \frac{\left(m_{bjj} - m_{t}^{reco}\right)^{2}}{\Gamma_{t}^{2}} + \frac{\left(m_{b\ell\nu} - m_{t}^{reco}\right)^{2}}{\Gamma_{t}^{2}} \end{aligned}$$

Select jet-quark combination and neutrino solution that gives smallest $\chi^2 < 9$. m_t is fit parameter:

Jochen Cammin (UR)

Top 2006, Coimbra, Portugal – 01/12/06

CDF: Template Method, 318 pb^{-1}

Background shape obtained in similar way.

Template fits to data

JES from fit to m_W

 $\mathcal{L}_{\text{sample}} = \mathcal{L}_{\text{shape}}^{m_t^{\text{reco}}} \times \mathcal{L}_{\text{shape}}^{m_{jj}} \times \mathcal{L}_{\text{nev}} \times \mathcal{L}_{\text{bg}} \qquad \text{(for details see hep-ex/0510048)}$

Combined likelihood

$$\mathcal{L}_{\mathsf{total}}(\textit{m}_t,\textit{JES}) = \mathcal{L}_{2\text{-tag}} \times \mathcal{L}_{1\text{-tag}(\mathsf{T})} \times \mathcal{L}_{1\text{-tag}(\mathsf{L})} \times \mathcal{L}_{0\text{-tag}} \times \mathcal{L}_{\mathsf{JES}}$$

CDF: Template Method, 318 pb⁻¹

Don't need to use external JES (with all its uncertainties). Can fit JES in-situ!

Combined likelihood JES vs. mt

Systematic uncertainties

 $m_{t} = 173.5^{+3.7}_{-3.6} (\text{stat.} + \text{JES}) \pm 1.3 (\text{syst.}) \text{ GeV}$ $(\Delta m_{t} (JES) = 3 \text{ GeV})$

CDF: Dynamic Likelihood Method, 318 pb⁻¹

Dynamic Likeihood Method (DLM)

Event selection:

- 1 e or μ with $p_T > 20 \text{ GeV}$
- exactly 4 jets $E_T > 15$ GeV
- $E_T^{\rm miss} > 20~{\rm GeV}$
- \geq 1 b-tag (SecVtx)

Then, calculate event-by-event likelihood

$$L^i(m_t) =$$

$$\int \sum_{\text{jet comb}} \sum_{\nu \text{sol.}} \frac{\frac{2\pi^4}{\text{flux}}}{|M^2|} F(z_1, z_2) f(p_T) w(x, y_t; m_t) dx$$

- M: LO matrix element for tt process
- F(z1, z2): parton distribution function
- f(p_T): p_T distribution of tt̄ system
- w(x, y; m_t): transfer function (detector resolution)

- No bkg. probability term
- b-tagging to reduce background.
- Combine all events: $\prod_{\text{events}} L^i$.

Reconstructed m_t vs. input m_t

CDF: Dynamic Likelihood Method, 318 pb^{-1}

Systematic uncertainties:

Source	Δm_t (GeV)
JES	3.0
Transfer function	0.2
ISR	0.4
FSR	0.5
PDFs	0.5
Generator	0.3
Bkg. fraction	0.2
Bkg. modeling	0.4
b jet energy modeling	0.6
b-tagging	0.2
total	3.2

$$m_t = 173.2^{+2.6}_{-2.4}$$
(stat.) ± 3.2 (syst.) GeV

DØ: Template method (topological), 230 pb^{-1}

Event selection:

- e or μ with $p_T > 20$ GeV
- \geq 4 jets with p_T > 20 GeV
- no b-tag
- kinematic fit; use combination with lowest χ² < 10
- Low bias discriminant D_{LB} from 4 topological input variables. $D_{LB} > 0.4$
- 94 $t\bar{t}$ candidates, S/B $\sim 1/1$
- Compare data to MC templates with various $m_t \rightarrow$ likelihood fit

$m_t = 169.9 \pm 5.8(stat.)^{+7.8}_{-7.1}(syst.) \text{ GeV}$

Low bias discriminant

Reconstructed top mass

DØ: Template method (b-tag), 230 pb^{-1}

Uses 'SVT' secondary vertex tagger

- similar I+jets selection
- \geq 1 b-tagged jet(s)
- $m igodoldsymbol{0} \geq$ 4 jets with $p_T > 15~{
 m GeV}$
- ${\ensuremath{\, \bullet }}$ No cut on low bias discriminant ${\ensuremath{\mathsf{D}_{\mathsf{LB}}}}$
- 69 $t\bar{t}$ candidates, S/B \sim 3/1

Reconstructed top mass

Systematic uncertainties

Source	$\Delta m_t \; (\text{GeV})$
JES	-5.3 /+4.7
gluon radiation	2.4
signal modelling	2.3
jet energy resolution	0.9
calibration	0.5
bkg modelling	0.8
b-tagging	0.7
trigger bias	0.5
MC statistics	0.5
total	6.0

Topological analysis: $\Delta m_t (JES) = -6.5/+6.8$ GeV.

 $m_t = 170.6 \pm 4.2 (stat.) \pm 6.0 (syst.) \text{ GeV}$

Top 2006, Coimbra, Portugal – 01/12/06

DØ: Ideogram method, 160 pb^{-1}

Based on same kinematic fit as template method, using same low-bias discriminant $\mathsf{D}_{\mathsf{LB}}.$ Improves statistics by

- using all jet/neutrino solutions for fitted mass m_i , σ_{m_i} , χ^2
- calculating event-by-event likelihood using all jet/neutrino solutions and probab. of event to be background (using D_{LB})

$$\begin{split} L(m_t, P_{\mathsf{sample}}) &= \sum_i w_i \left(P_{\mathsf{evt}} \cdot S(m_i, \sigma_i, m_t) + (1 - P_{\mathsf{evt}}) \cdot BG(m_i) \right) \\ w_i &= \exp(-\chi_i^2/2) \quad (\text{best permutation gets highest weight}) \\ S(m_i, \sigma_i, m_t) &= \int dm' G(m', m_i, \sigma_i) \cdot BW(m', m_t, \Gamma_{\mathsf{top}}) \end{split}$$

Signal likelihood based on Gaussian resolution and Breit-Wigner. BG shape from Monte Carlo simulation.

DØ: Ideogram method, 160 pb^{-1}

Event selection (no b-tagging):

• e or μ with $p_T > 20 \text{ GeV}$

- \geq 3 jets with p_T > 20 GeV \geq 4 jets with p_T > 15 GeV
- lowest $\chi^2 <$ 10, no cut on ${\rm D}_{\rm LB}$
- 191 $t\overline{t}$ candidates, S/B \sim 1/2

Expected stat. error

Likelihood

 $m_t = 177.5 \pm 5.8 (\text{stat.}) \pm 7.1 (\text{syst.}) \text{ GeV}$

New results with 320 pb^{-1} , b-tag and insitu JES calibration expected very soon!

DØ: Matrix element method, 320 pb^{-1}

Uses in-situ m_W constraint to calibrate jet energy.

- Make maximal use of information in event by calculating probability for event to be signal or background from the matrix element
 - $P(x; M_{top}) = \frac{1}{\sigma} \int d^n \sigma(y; M_{top}) dq_1 dq_2 f(q_1) f(q_2) W(x, y)$
 - LO matrix element differential cross section
 - f(q) probability distribution of initial parton having momentum q
 - probability of parton level variable y to be measured as variable x
- Input: 4-vectors of final-state particles, acceptance, resolution of detector

•
$$P_{\text{evt}}(x; m_t, JES) = f_{\text{top}} \cdot P_{\text{sgn}}(x; m_t, JES) + (1 - f_{\text{top}}) \cdot P_{\text{bkg}}(x; JES)$$

• Combine all events into likelihood:

$$-\ln L(x_1,\ldots,x_n;m_t,JES) = -\sum_{i=1}^n \ln \left(P_{\text{evt}}(x_i;m_t,JES)\right).$$

Maximize likelihood L as a function of m_{top} and JES.

DØ: Matrix Element method, 320 pb^{-1}

Event selection

- e or μ with $p_T > 20$ GeV
- exactly 4 jets with p_T > 20 GeV, (veto on 5th jet), no b-tag
- $E_T^{\text{miss}} > 20 \text{ GeV}$
- $\Delta \phi$ cut between ℓ and E_T^{miss}
- \rightarrow 150 candidate events

Likelihood technique to estimate signal and bkg. fractions

This value of ftop only used for calibration.

Ensemble tests with MC events

Mass calibration

m_{top} calibration (I+jets)

Pull distribution

DØ: Matrix Element method, 320 pb^{-1}

Simultaneous fit of m_t , JES (from m_W constraint) and f_{top} .

$$P_{evt}(x; m_t, JES) =$$

$$f_{top} \cdot P_{sgn}(x; m_t, JES)$$

$$+(1-f_{top})\cdot P_{bkg}(x; JES)$$

DØ ME: Cross check and systematic uncertainties

Cross check on W mass

- scale jets by fitted JES factor
- adjust E_T^{miss} accordingly
- refit with m_W as parameter

Expected stat. error

Systematics

Source	Δm_t (GeV)
JES	0.7
B response (h/e)	0.8
B fragmentation	0.7
Signal modelling	0.3
Bkg. modelling	0.3
Signal fraction	+0.5 / -0.2
QCD contamination	0.7
MC calibration	0.4
Trigger	0.1
PDFs	0.3
total	+1.7 / -1.6

Dominated by jet energy scale.

 $m_t = 169.5 \pm 4.4(stat. + JES)^{+1.7}_{-1.6}(syst.) \text{ GeV}, \qquad \Delta m_t(JES) = 3.2 \text{ GeV}$

Issues with Jet Energy Scale

- JES corrections account for offset (noise, underlying event, ...), out-of-cone showering, and detector response.
- JES is largest single uncertainty.
- CDF: New Run II systematics better than Run I.
- DØ: Systematics in presented analyses > than Run I, but new analyses using reprocessed data will benefit from much improved JES.
- Often, the *relative* data/MC JES agreement is important for top-mass measurements.
- In-situ m_W calibration helps to improve light-jet JES.
- Nothing equivalent for b-JES yet. In the future: b-JES from $Z \rightarrow b\bar{b}$?

for a jet with 0.2 $< |\eta| <$ 0.6

For more information about Jet Energy Scale, see talk by K. Hatakeyama, Friday 9:55.

CDF: Decay length method, 318 pb^{-1}

New method: extract m_t from transverse decay length of b-hadrons from top decays. Relies on tracking; minimized JES uncertainties. Uncorrelated to all

other methods.
boost of b-guarks;

$$\gamma_b = \frac{m_t^2 + m_b^2 - m_W^2}{2m_t m_b} \approx 0.4 \frac{m_t}{m_b}$$

- experimentally, measure average transverse decay length (L_{xy})
- ℓ with $p_T > 18$ GeV, $E_T^{\text{miss}} > 20$ GeV, ≥ 3 jets with $E_T > 15$ GeV. At least one jet SecVtx tagged.
- 216 positive tags in 178 events.

•
$$\langle L_{xy} \rangle = 0.6153 \pm 0.0356$$
 cm.

 $m_t = 207.8^{+27.6}_{-22.3}(\text{stat.}) \pm 6.5(\text{syst.}) \text{ GeV}$

Decay length distributions

Transverse Decay Length - Tagged W + ≥ 3 Jet Events

Calibration curve from ensemble testing

Summary of measurements

CDF

DØ DØ Run II Preliminary

Jochen Cammin (UR)

Summary and Outlook

CDF and DØ

- Lepton+Jets channels provide the most precise top-mass measurements.
- Important new step is to use in-situ JES calibration from m_W constraint.
- Results with smaller statistical error and increasing use of b-tagging expected soon.

BACKUP

Top mass combination

From hep-ex/0507091

		Run-I published				Run-II preliminary				
			CDF		DØ		CDF			DØ
		all-j	l+j	di-l	l+j	di-l	$(l+j)_i$	$(l+j)_e$	di-l	l+j
CDF-I	all-j	1.00								
CDF-I	l+j	0.32	1.00							
CDF-I	di-l	0.19	0.29	1.00						
DØ-I	l+j	0.14	0.26	0.15	1.00					
DØ-I	di-l	0.07	0.11	0.08	0.16	1.00				
CDF-II	$(l+j)_i$	0.04	0.12	0.06	0.10	0.03	1.00			
CDF-II	$(l+j)_e$	0.35	0.54	0.29	0.29	0.11	0.45	1.00		
CDF-II	di-l	0.19	0.28	0.18	0.17	0.10	0.06	0.30	1.00	
DØ-II	l+j	0.02	0.07	0.03	0.07	0.02	0.07	0.08	0.03	1.00

Pull and weight

Global correlations

	Run-I published				Run-II preliminary				
	CDF			DØ		CDF			DØ
	all-j	l+j	di-l	l+j	di-l	(l+j)i	(l+j)e	di-l	l+j
Pull	+1.19	+0.51	-0.48	+1.67	-0.34	+0.18	+0.24	-1.11	-0.86
Weight [%]	+1.0	-0.2	+1.1	+18.8	+2.1	+18.6	+17.4	+8.0	+33.3

Summary of combination

Parameter	Value	Correlations			
$M_{\rm top}^{\rm all-j}$ [GeV/ c^2]	185.0 ± 10.9	1.00			
$M_{\rm top}^{\rm l+j}~[{\rm GeV}/c^2]$	173.5 ± 3.0	0.22 1.00			
$M_{\rm top}^{\rm di-l} \; [{\rm GeV}\!/c^2]$	165.0 ± 5.8	0.15 0.31 1.00			

