

Precision Measurements of the Top Quark Mass in the Dilepton Channel

Bo Jayatilaka University of Michigan/CDF

On Behalf of the CDF and DØ Collaborations

Top 2006, Coimbra, Portugal January 12, 2006

Outline

- Why measure the top mass?
 - Why the dilepton channel in particular?
- The dilepton channel and data sets
- Methods to measure the top mass
- Measurements
 - CDF template measurement
 - DØ template measurement
 - CDF matrix element measurement
 - CDF combination
- Conclusion and outlook

Why Measure the Top Mass

• Discrepancy could indicate new physics

Top Decay: The Dilepton Channel

- Top quarks are primarily pair produced
 - Decay channel is defined by W decay modes
- Both Ws decay leptonically in ~5% of all decays
 - 2 leptons (e or μ), 2 jets (from *b*-quarks), large \not{E}_T from \forall s

Advantages

- Clean: little background without need for b-tagging
- Least jets of any channel (less reliant on JES, less ambiguity in jets)

Disadvantages

- Low statistics
- 2 vs escape undetected- underconstrained system

Backgrounds

- Drell-Yan + jets
- Diboson + jets
- Mis-ID leptons ("fakes")

Data Samples

- DØ: 230 pb⁻¹, 13 candidate events in data
- CDF: Two complementary selection methods^{*}
 - DIL: Lower acceptance, higher S:B
 - 340 pb⁻¹, 33 candidate events in data
 - LTRK: Higher acceptance, lower S:B
 - 359 pb⁻¹, 46 candidate events in data

Source	CDF(DIL)	CDF(LTRK)	DØ
$tt (M_t = 175 \text{ GeV}/c^2)$	17.2±1.4	19.4±1.35	7.1±0.67
Drell-Yan	4.7±1.2	8.71±3.31	0.61±0.09
Fakes	3.5±1.4	3.96±1.21	0.27±0.07
WW/WZ	1.6±0.22	1.96±0.37	0.54±0.22
Ζ→тт	0.8±0.2	**	0.53±0.13
Total	27.7±2.3	34.1±3.89	9.00±0.67
Data	33	46	13

** $Z \rightarrow \tau \tau$ Included in Drell-Yan estimate

DØ

- 2 leptons with $p_T > 15$ GeV/c - 2 jets with $p_T > 20$ GeV/c, $|\eta| < 2.5$ - $E_T > 25$ GeV, 40 GeV for same flavor leptons - $H_T > 140$ GeV

- 80 GeV/ $c^2 < m_{\parallel} < 100$ GeV/ c^2 for same flavor leptons

CDF(DIL)

- 2 leptons with $p_T > 20 \text{ GeV}/c$
- 2 jets with $E_T > 15$ GeV/*c*,

|ŋ|<2.5

- ∉_T >25 GeV
- *H*_T >200 GeV
- Higher E_T requirement for 76 GeV/ $c^2 < m_{\parallel} < 106$ GeV/ c^2

CDF(LTRK)

- I lepton with $p_T > 20 \text{ GeV}/c$
- I isolated, well-measured track with $p_T > 20 \text{ GeV}/c$
- 2 jets with *E*_T >20 GeV, |η|<2 - *E*_T >25 GeV

* PRL 93, 142001 (2004)

Measuring the Top Mass

I.Template-based

Reconstruct mass for each event

Perform maximum likelihood fit to extract measured M_{top}

Advantages: Takes all (simulated) detector effects into account, (relatively) computationally simple Disadvantages: Only single number (recon. mass) per event in final Likelihood, all events have equal weight

2. Matrix Element-based

Form per-event probability using matrix element

Integrate over unmeasured quantities Form ensemble probability and calibrate using simulated events

Advantages: More statistical power, probability curve rather than single mass per event, events weighted naturally Disadvantages: Complex numerical integration (much CPU)→machinery does not account for all detector effects

CDF: Template Methods

- CDP
- Since dilepton channel is under-constrained by 1 d.o.f., template methods must make assumption about one variable
 - Assumed variable is then integrated over
 - Most probable mass selected for each event
- Resulting mass distribution is fitted to templates
- Signal and background templates are formed using simulated events

Method	Assumed Variable	Dataset
Neutrino Weighting (NWA)	η of two neutrinos	LTRK (46 events)
Full Kinematic (KIN)	þ _z of t ī system	DIL (30 events)*
Neutrino-φ Weighting (PHI)	ϕ of two neutrinos	DIL (33 events)

CDF:Template (NWA)

- Form kinematic solutions for events by assuming η_1 , η_2 and m_t

$$w_{i} = \exp\Big(-\frac{(\not\!\!\!E_{T_{x}} - p_{x}^{\nu} - p_{x}^{\overline{\nu}})^{2}}{2\sigma_{x}^{2}}\Big) \cdot \Big(-\frac{(\not\!\!\!E_{T_{y}} - p_{y}^{\nu} - p_{y}^{\overline{\nu}})^{2}}{2\sigma_{y}^{2}}\Big)$$

- Calculate probability by integrating over unknowns (ν ηs, lepton-jet pairings)
- Pick *m_t* that maximizes prob. for each event
- Fit to signal+background templates
 - "Standard" template machinery from this step

 $M_{top} = 170.7^{+6.9}_{-6.5}(stat.) \pm 4.6(syst.) GeV/c^2$

CDF: Template (KIN and PHI)

KIN

PHI

 $M_{top} = 169.9^{+7.7}_{-7.2}(stat.) \pm 4.0(syst.) GeV/c^2$ $M_{top} = 169.7^{+8.9}_{-9.0}(stat.) \pm 4.0(syst.) GeV/c^2$

Mass distribution fit to S+B templates

 $M_{top} = 155^{+14}_{-13}(stat.) \pm 7(syst.) GeV/c^2$

- Final mass extracted by maximum likelihood
- Most likely mass chosen for each event
- $p(E_l|m_t)$ derived from matrix element
- $W_0(m_t) = \sum \int f_{PDF}(x) f_{PDF}(\overline{x}) p(E_{\ell}^* | m_t) p(E_{\overline{\ell}}^* | m_t)$ solutions jets
- Weight assigned for each solution

CDF: Matrix Element

Use differential cross-section to calculate probability of event coming from M_{top}

$$\frac{d\mathbf{x}(\mathbf{M}_{t})}{d\mathbf{x}} = \frac{1}{N} \int d\Phi_{6} |\mathcal{M}_{t\overline{t}}(p_{i};M_{t})|^{2} \mathbf{\prod} W(p_{i},\mathbf{x}) f_{PDF}(q_{1}) f_{PDF}(q_{2})$$

- Transfer functions link measured quantities **x** to parton-level ones, p_i
- Perform integrals over unknown quantities (6)
- Simplifying assumptions made for tractability
 - *p*_T of system ~0
 - Lepton momenta and jet angles well measured
 - Leading jets in events are from *b*-decay
- Use similar differential cross-sections for background processes

CDF: Matrix Element (Backgrounds)

• Final event probability is weighted sum of signal and background probabilities

 $P(\mathbf{x}|M_t) = P_s(\mathbf{x}|M_t)p_s + P_{bg_1}(\mathbf{x})p_{bg_1} + P_{bg_2}(\mathbf{x})p_{bg_2} + \cdots$

- Weights are determined from expected fractional contribution of each source
- Form differential cross-sections as in signal for each modeled background process
 - Difficult to determined closed-form expression for backgrounds: use ME-based generators instead (e.g. ALPGEN)
- Example: DY+2 jets
- Modeled backgrounds
 - DY+jets
 - WW+jets
 - W+3 jets (for fakes)
- Product of per-event prob. densities give likelihood for sample

CDF: Matrix Element (Result)

- Calibrated using simulated events. Accounts for:
 - Detector effects resulting in violation of assumptions
 - Presence of energetic jets resulting from ISR
 - Presence of unmodeled backgrounds
- Method has best a priori sensitivity of CDF dilepton top mass measurements
 - Inclusion of background likelihoods improves resolution (stat. uncertainty) by 15%
- Measured result:

 $M_{top} = 165.2 \pm 6.1 (stat.) \pm 3.4 (syst.) GeV/c^2$

Single most precise dilepton top mass measurement to-date

hep-ex/0512070, Submitted to PRL

 $M_{t}[GeV]$

Systematic Uncertainties

Source	CDF (ME) GeV/c ²	CDF (NWA) GeV/c ²	DØ (Template) GeV/c ²
Jet Energy Scale	2.6	3.5	5.6
MC Statistics	I.2	1.3	I.0
PDFs	1.1	0.5	0.9
Generator	0.8	0.5	3.0
Background Shape	0.8	2.6	1.0
ISR/FSR	0.7	0.8	*
Method	0.4	N/A	1.1
Sample Composition	0.3	N/A	N/A
Total	3.4	4.6	6.7

Improves with better methods and/or more data

Improves with more CPU

* ISR/FSR included in generator uncertainties

- JES is dominant systematic in all measurements
 - Can't incorporate *in-situ* JES calibration in the same way as in I+jets (only *b*-jets)
 - Work being done on possibly incorporating $Z \rightarrow b\overline{b}$ to calibrate *b*-jet energy scale
- Note: DØ measurement JES systematic using older algorithm

CDF: Combination

- Combination performed on 4 CDF measurements
 - Uses BLUE method (also used for world ave. top mass)
- Statistical correlations extracted from common pseudo-experiments
- Systematics assumed 100% correlated except method-specific systematics
- Resulting combination gives 15% greater precision than single-best measurement

 $M_{top} = 167.9 \pm 5.2 (stat.) \pm 3.7 (syst.) GeV/c^2$

hep-ex/0512070, Submitted to PRL

140 150 10 Tor	60 60	170	180	190
Combined I+jets (D0+CDF Run 1+2)	5	173	$\frac{1.7}{5} \pm \frac{1.7}{1.7} \pm 2$	2.4
Combined Dilep (CDF Run 2)	oton	167.	$9 \pm \frac{5.2}{5.2} \pm 3$	3.7
Matrix Element $(L=340 \text{ pb}^{-1})$	•-	165.	$2 \pm \frac{6.1}{6.1} \pm 3$	3.4
Template : η of ν (L= 359 pb ⁻¹)		170.	$7\pm^{6.9}_{6.5}\pm^{6.9}_{6.5}$	4.6
Template: ϕ of v (L= 340 pb ⁻¹)		169.	$7\pm \frac{8.9}{9.0}\pm 4$	4.0
Template: ttbar (L= 340 pb ⁻¹)	Pz	169.	$5 \pm \frac{7.7}{7.2} \pm 6$	4.0
CDF II Dileptor	n Top N	lass Me	easureme	nts

Method	Correlation Matrix			×	Weight
ME	I				0.47
NWA	0.12	I			0.36
KIN	0.40	0.14	Ι		0.18
PHI	0.43	0.25	0.35	I	0.00

Conclusion and Outlook

- Dilepton top mass precision from 11.4 GeV/c² (in Run 1) to 6.4 GeV/c² (CDF combined)
 - CDF ME measurement ~8% weight in world average top mass (hep-ex/0507091)
- With 2.5 fb⁻¹ of data, statistical error and systematic error become comparable (with no method improvements)
 - Dilepton top mass becomes a precision measurement
 - I+jets and dilepton top mass will have comparable overall errors with 8 fb⁻¹
- Many further improvements expected: the best is yet to come!

Bo Jayatilaka

Backup Slides

Matrix Element Data Events

•33 candidate events in data •Int. Lum of 340 pb⁻¹ • Each curve is sig+bg likelihood •x-axes are 130-220 GeV/c² Probability 10

Effects of SUSY Events on Dilepton Mass

Chargino/Neutralino Decaying to III+2 jets or II+2q $M\chi$ + = 103 GeV/c $M_{\chi 0}$ = 50 GeV/c tan β = 5 $\sigma \cdot BR$ = 150 fb Acc = 0.15%

Expected Stat. Uncertainties

DØ:Template (sim. events for $M_t = 175 \text{ GeV}/c^2$)

CDF: ME (sim. events for $M_t = 165 \text{ GeV}/c^2$)

Expected Stat. Uncertainties (cont.)

CDF: KIN (sim. events for $M_t = 170 \text{ GeV}/c^2$)

CDF: KIN and PHI Systematics

	KIN (GeV/c²)	PHI (GeV/c²)
Jet Energy Scale	3.2	3.5
Generator	0.6	1.0
PDFs	0.5	1.0
ISR/FSR	0.7	I.I
Background Shape	1.5	0.7
Background Amount	0.3	
Background Statistics	0.8	
Total	4.0	4.0

World Average

- hep-ex/0507091
- Dominated by Run II I+jets from CDF (36%) and D0 (33.3%)
 - D0 Run I I+jets: 18.8%
 - CDF Run II dilepton: 8.0%
- Mass of top quark known to precision of 1.7%

