Search for Single Top Quark Production at the Tevatron

Michael Begel

University of Rochester

on behalf of the DØ and CDF collaborations

Top Pair Production

Top quarks exist at the interface between QCD and Electroweak 100000 Becolog

- heaviest known elementary particle
- decays before it hadronizes
- provides unique test of QCD
- constrains mass of the SM Higgs $\sigma_{\mathsf{NLO}}=6.77\pm0.42$ pb

at $m_t = 175 \text{ GeV}$

 $\approx 15\%$

Weak Decay Vertex

top quark decay

- decay properties
- $|V_{tb}|$

single top production

- cross section
- ullet $|V_{tb}|$

Single Top Production

$\sigma_{ m NLO}$	Tevatron	$0.88^{+0.07}_{-0.06}$ pb	$1.98^{+0.23}_{-0.18}$ pb	0.093 ± 0.024 pb	
	LHC	10.6 ± 1.1 pb	247 ± 25 pb	62^{ig+17}_{-4} pb	
Run I 95%	CDF	< 18 pb	< 13 pb		$< 14~{ m pb}$
CL Limit	DØ	< 17 pb	< 22 pb		

Michael Begel

4

Goals

- Observe single top quark production
- Measure the production cross section
 - extract $|V_{tb}|$
 - study top quark polarization
 - background to SM Higgs production
- Look for physics beyond the Standard Model ⇒ different sensitivity for s- and t-channels
 - FCNC
 - anomalous couplings
 - 4th generation
 - top flavor
 - etc...

Event Signatures

signal for s- and t-channels similar like $t\bar{t}$ production, but with fewer jets

- t channel b jet tends
 to be forward

hard signal to find

Backgrounds

anything with lepton + $\not\!\!E_T$ + jets

- W/Z + jets production
- top pair production

significantly worse than for $t\bar{t}$ production because of the lower jet multiplicity

- multi-jet events (misidentified lepton)
- WW, WZ, Z
 ightarrow au au

Michael Begel

TOP 2006 — Search for Single Top Quark Production at the Tevatron — 1/12/6

Signal Modeling

Understanding the characteristics of single top signal crucial for discovery

- s-channel MC generators agree well with NLO calculations
- *t*-channel generators are still an issue \Rightarrow Match 2 \rightarrow 3 and 2 \rightarrow 2 processes using the *b* p_T spectrum
- CDF: re-weight MADEVENT to fit ZTOP NLO distributions
- DØ: modified version of COMPHEP (COMPHEP and ZTOP agree well)

Background Modeling

Based on data as much as possible ... W/Z + jets production estimated from data & MC $\overline{\boldsymbol{h}}$ heavy flavor fractions (b,c) from e or μ ALPGEN (CDF) and MCFM (D \emptyset) normalization from pre-tagged sample E_T top pair production contribution from the ℓ + jets channel estimated from Pythia (CDF) and ALPGEN (DØ) $e \text{ or } \mu$ multi-jet events jet misidentified as lepton 60000 semi-leptonic decay of HF jets (bb) estimated from data WW, WZ, Z
ightarrow au auEstimated from PYTHIA (CDF) and ALPGEN (DØ)

Michael Begel

8

Search Strategy

- select W-like events
- remove background-like events
- optimize sensitivity

Separate Signal from Background

- find discriminating variables
- compare data with Monte Carlo

Determine Cross Section

- event counting
- likelihood

Michael Begel

9

Event Selection

Secondary Vertex Tagger

similar efficiency and mis-tags for CDF (CDF & DØ will utilize taggers with improved efficiency in future analyses)

Events classified by presence of single or multiple tagged jets

Systematic Uncertainties

CDF (fractional changes in ϵ_{evt})							
Source	t channel	s channel	combined				
JES	$\begin{array}{c} +2.4 \\ -6.7 \end{array}$	$\begin{array}{c} +0.4 \\ -3.1 \end{array}$	$\begin{array}{c} +0.1 \\ -4.3 \end{array}$				
ISR	± 1.0	± 0.6	± 1.0				
FSR	± 2.2	± 5.3	± 2.6				
PDF	± 4.4	± 2.5	± 3.8				
Generator	± 5	± 2	± 3				
M_t	$\begin{array}{c} +0.7 \\ -6.9 \end{array}$	-2.3	-4.4				
trigger, ID, \mathcal{L}	± 9.8	± 9.8	± 9.8				

dominant sources

- **b** tag: 7%
- luminosity: 6%
- M_t : 4%
- JES: 4%

DØ

normalization				
$\sigma_{tar{t}}$ theory & mass	18%			
$\sigma_{s(t)}$ theory	15(16)%			
jet fragmentation	5%			
ℓID	5%			
shape and normalization				
<i>b</i> tag (single/double)	10/20%			
JES	10%			
trigger	6%			
jet ID	5%			

Some uncertainties will improve with increased luminosity

Cut-Based Analysis

p_T(jet1 _{untagged}) [GeV]

M(alljets) [GeV]

cross section [pb]

Charge Rapidity Correlation

Charge of the up quark determines charge of the W lepton. In the t channel:

- t: light quark jet in p direction
- $ar{t}$: light quark jet in $ar{p}$ direction

Correlation between

- rapidity of untagged jet
- lepton charge

 $Q \cdot \eta$ distribution asymmetric for the t channel \Rightarrow look at d-quark jet rapidity normalized by charge

Michael Begel

20

 $\beta_{95} = 15.4$

5

10

15

CDF Run II preliminary

 $L dt = 162 \text{ pb}^{-1}$

σ_{s-ch}< 13.6 pb

expected: 12.1 pb

25

30

 $\beta = \sigma / \sigma_{SM}$

35

Charge Rapidity Correlation

Maximum likelihood fit to the data

 background allowed to float but constrained to expectation
 shape of systematic uncertainties included in likelihood

Phys. Rev D71, 012005 (2005)

 $\mathcal{L} = 162\,\mathrm{pb}^{-1}$

Combined Search

 H_T distribution similar for s- and t-channel single top production, but different for background processes.

Phys. Rev D71, 012005 (2005)

Multivariate Analyses

Use multivariate analysis techniques to separate signal from background

- neural networks
- decision trees
- likelihood discriminant

 \Rightarrow loosen selection cuts to maximize signal. In each analysis, optimize separately on

- s- and t-channel
- e and μ channel 8 separate samples
- number of b tags

and focus on dominant backgrounds: W+jets and $t\overline{t}$

see Y. Coadou's talk on Friday for additional details

Neural Network

3 broad categories of variables; 25 distributions global event kinematics object kinematics angular correlations **Event Yield** DØ Run II Preliminary, 230pb⁻¹ DØ Run II Preliminary, 230pb⁻¹ Event Yield Event Yield DØ Run II Preliminary, 230pb Data 50 35 - Data - Data **40** t-channel (×10) t-channel (×10) t-channel (×10) s-channel (×10) 35∃ s-channel (×10) 30 s-channel (×10) tī 40 t t tī 📕 W+jets W+jets W+jets 30E 25 multiiet multiiet multiiet **25**E 30 20 20 15 20 15 10 10 100 150 200 50 200 250 300 -0.5 0.5 50 100 150 cos(lepton,jet1 untagged)_{toptag} p_T(jet1_{tagged}) [GeV] H_T(alljets-jet1 tagged) [GeV]

Two networks per analysis

trained on signal & $t\bar{t}$

trained on signal & $Wb\overline{b}$

Systematic uncertainties were calculated for each bin, then repeated for all bins to properly account for shape fluctuations.

Neural Network

Michael Begel

TOP 2006 — Search for Single Top Quark Production at the Tevatron — 1/12/6

Decision Trees

Yields probability for an event to be signal. Follow the NN approach: same configuration, samples, and variables. $H_T > 212$

Likelihood Discriminant

Use a likelihood discriminant to separate signal from background. An impact-parameter based *b* tagger was used instead of SVT. Samples defined similar to the NN/DT analyses.

Michael Begel

TOP 2006 — Search for Single Top Quark Production at the Tevatron — 1/12/6

21

Summary

Michael Begel

Single top quark production has not yet been observed (expected/observed):

s-channel limit: 4.3/5.0 pb (compared to 0.9 ± 0.1 pb SM expectation) t-channel limit: 3.3/4.4 pb (compared to 2.0 ± 0.2 pb SM expectation)

Limits can still constrain potential new physics.

 3σ evidence can be expected with $\approx 1.5~{
m fb}^{-1}$ (ignoring systematics).

• CDF and DØ are exploring improved multivariate analysis techniques with the 1 fb^{-1} data sample. Initial results should be available soon.

