Pair production of heavy Q = 2/3 singlets at LHC

J. A. Aguilar-Saavedra

Univ. Granada & CFTP, IST Lisbon

TOP 2006, Coimbra, January 12th 2006

★ ∃ ▶ ★ ∃ ▶ ∃ ∃ ♥ 𝔅 𝔅

- 2 $T\overline{T}$ production at LHC
- Summary and conclusions

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

Overview of the model

Addition of one $SU(2)_L$ singlet T with charge Q = 2/3extra dimensions, little Higgs models, GUTs

得 トイヨト イヨト ヨヨ のくや

Mass matrix of Q = 2/3 quarks with seesaw structure

 $M^{u} = \frac{v}{\sqrt{2}}Y^{u}, B^{u}$ bare mass term or from Higgs singlet

$$\mathcal{M}^{u} = \begin{pmatrix} M^{u} \\ B^{u} \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ B_{1} & B_{2} & B_{3} & B_{4} \end{pmatrix}$$

Mixing with singlet \Leftrightarrow modifies interactions with W, Z and H does not affect interactions with γ , g

$$\mathcal{L}_{W} = -\frac{g}{\sqrt{2}} \left[\bar{u} \gamma^{\mu} V P_{L} d W_{\mu}^{+} + \bar{d} \gamma^{\mu} V^{\dagger} P_{L} u W_{\mu}^{-} \right]$$
$$\mathcal{L}_{Z} = -\frac{g}{2c_{W}} \bar{u} \gamma^{\mu} \left[P_{L} - \frac{4}{3} s_{W}^{2} \mathbb{1}_{4 \times 4} \right] u Z_{\mu}$$
$$\mathcal{L}_{H} = \frac{g}{2M_{W}} \bar{u} \left[\mathcal{M}^{u} P_{L} + \mathcal{M}^{u} P_{R} \right] u H$$

▶ ★ ∃ ▶ ★ ∃ ▶ ∃ = 9 Q Q

Mixing with singlet \Leftrightarrow modifies interactions with W, Z and H does not affect interactions with γ , g

$$\mathcal{L}_{W} = -\frac{g}{\sqrt{2}} \left[\bar{u} \gamma^{\mu} V_{4\times 3} P_{L} d W_{\mu}^{+} + \bar{d} \gamma^{\mu} V_{4\times 3}^{\dagger} P_{L} u W_{\mu}^{-} \right]$$
$$\mathcal{L}_{Z} = -\frac{g}{2c_{W}} \bar{u} \gamma^{\mu} \left[X P_{L} - \frac{4}{3} s_{W}^{2} \mathbb{1}_{4\times 4} \right] u Z_{\mu}$$
$$\mathcal{L}_{H} = \frac{g}{2M_{W}} \bar{u} \left[\mathcal{M}^{u} X P_{L} + X \mathcal{M}^{u} P_{R} \right] u H$$

 $X = VV^{\dagger}$

▶ ★ ∃ ▶ ★ ∃ ▶ ∃ = 9 Q Q

In particular:

- New quark *T* has a CC coupling *V*_{*Tb*} to the *b* quark (*V*_{*Td*}, *V*_{*Ts*} much smaller)
- T has a FCN coupling to the top and Z boson $|X_{tT}|^2 \simeq |V_{Tb}|^2 (1 - |V_{Tb}|^2)$
- V_{tb} smaller than unity: $|V_{tb}|^2 = 1 - |V_{ub}|^2 - |V_{cb}|^2 - |V_{Tb}|^2 \simeq 1 - |V_{Tb}|^2$
- $Z t_L t_L$ coupling also smaller: $c_L = 1 - \frac{4}{3} s_W^2 \longrightarrow c_L = X_{tt} - \frac{4}{3} s_W^2$, with $X_{tt} \simeq |V_{tb}|^2$

Signals at LHC

Production of the new quark T
 QCD pair production pp → TT

 [Aguila et al., NPB '90]
 EW single production pp → Tj
 [Han et al., PRD '03]

 FCN processes involving the top quark

 [JAAS, APPB '04]

Rare top decays $t \rightarrow Zq$, $t \rightarrow Hq$ (q = u, c)

Single top production $gq \rightarrow Zt, gq \rightarrow Ht$

Signals at LHC

• Production of the new quark T larger σ for moderate m_T σ independent of V_{Tb} QCD pair production $pp \to T\overline{T}$ \ll EW single production $pp \rightarrow Tj$ [Han et al., PRD '03] • FCN processes involving the top quark [JAAS, APPB '04] Rare top decays $t \to Zq$, $t \to Hq$ (q = u, c)Single top production $gq \rightarrow Zt, gq \rightarrow Ht$

Signals at LHC

- Production of the new quark T QCD pair production $pp \to T\overline{T}$ [Aguila et al., NPB '90] EW single production $pp \to Tj$ \Leftrightarrow $\begin{bmatrix} \sigma \propto |V_{Tb}|^2 \\ \text{larger}^* \sigma \text{ for } m_T \gtrsim 1 \text{ TeV} \end{bmatrix}$
- FCN processes involving the top quark [JAAS, APPB '04] Rare top decays $t \to Zq$, $t \to Hq$ (q = u, c) Single top production $gq \to Zt$, $gq \to Ht$

Decays of T	$(M_H = 115 \text{ GeV})$		
m_T	500 GeV	1 TeV	
${\rm Br}(T \to W^+ b)$	0.50	0.50	
$\operatorname{Br}(T \to Zt)$	0.16	0.23	
$\operatorname{Br}(T \to Ht)$	0.34	0.27	

Decay $T \to W^+ b$: the same final states as for a top quark (4th generation T may have decays $T \to W^+ B$ with $B \to W^- t$)

Additional decays $T \rightarrow Zt, T \rightarrow Ht$ establish that T is a singlet

 $T \rightarrow Ht$ discovery channel for a light Higgs boson

▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 目 = ∽ Q ()~

$T\overline{T}$ production at LHC

We study $T\overline{T}$ production in the channel $T\overline{T} \rightarrow W^+ bW^- \overline{b}$ with one *W* decaying leptonically and the other one hadronically

[JAAS, PLB '05]

◎ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ● ● ● ●

We consider $m_T = 500$ GeV, $m_T = 1$ TeV

Event generation done with our own MC generators $(T\overline{T}, t\overline{t}, t\overline{b}j)$ and ALPGEN $(Wb\overline{b}jj, Zb\overline{b}jj)$

Analysis done with PYTHIA + ATLFAST

b tagging efficiency of 60% (50%) for low (high) luminosity phase

We require a final state with:

- one isolated charged lepton
- two *b*-tagged jets
- at least two additional jets

with $|\eta| \le 2.5, p_t \ge 20$ GeV

過 ト イ ヨ ト イ ヨ ト 三 日 つ へ ()

Additional signal contributions from $T \rightarrow Zt, T \rightarrow Ht$ decays:

 $T\overline{T} \to W^+ b H\overline{t}, Ht W^- \overline{b} \to W^+ b W^- \overline{b} H \quad (H \to b\overline{b}, c\overline{c})$ $T\overline{T} \to W^+ b Z\overline{t}, Zt W^- \overline{b} \to W^+ b W^- \overline{b} Z \quad (Z \to jj, b\overline{b}, \nu\overline{\nu})$

We require a final state with:

- one isolated charged lepton
- two *b*-tagged jets
- at least two additional jets

with $|\eta| \le 2.5$, $p_t \ge 20$ GeV

過 ト イ ヨ ト イ ヨ ト 三 日 つ へ ()

 $rac{2}{\sim}$ Additional signal contributions from $T \rightarrow Zt, T \rightarrow Ht$ decays:

 $T\overline{T} \to W^+ b \, H\overline{t} \,, \, Ht \, W^- \overline{b} \to W^+ b \, W^- \overline{b} \, H \quad (H \to b\overline{b}, c\overline{c})$

 $T\overline{T} \to W^+ b Z \overline{t}, Z t W^- \overline{b} \to W^+ b W^- \overline{b} Z \quad (Z \to jj, b\overline{b}, \nu \overline{\nu})$

We require a final state with:

- one isolated charged lepton
- two b-tagged jets
- at least two additional jets

with $|\eta| \le 2.5$, $p_t \ge 20$ GeV

 \gg Additional signal contributions from $T \rightarrow Zt, T \rightarrow Ht$ decays:

 $T\overline{T} \to W^+ b H\overline{t}, Ht W^- \overline{b} \to W^+ b W^- \overline{b} H \quad (H \to b\overline{b}, c\overline{c})$ $T\overline{T} \to W^+ b Z\overline{t}, Zt W^- \overline{b} \to W^+ b W^- \overline{b} Z \quad (Z \to jj, b\overline{b}, \nu\overline{\nu})$

Signal and background cross sections				
Process		$\sigma\times \mathrm{eff}$	Process	$\sigma\times \mathrm{eff}$
$T\bar{T}$ (500)		37.3 fb	$t\overline{t}$	18.8 pb
	+	46.5 fb (<i>H</i>)	Wbb̄jj	1.23 pb
	+	19.8 fb (Z)	$Z b \overline{b} j j$	246 fb
$T\bar{T}$ (1000)		0.618 fb	tĒj	710 fb
	+	0.638 fb (<i>H</i>)		
	+	0.481 fb (Z)		

We require high transverse momentum for the charged lepton and jets

$m_T = 500 \text{ GeV}$	İ.
$p_t^{ m lep} \ge 50~{ m GeV}$	l
$p_t^{j,\max} \ge 250 \text{ GeV}$	L
$p_t^{b,\max} \ge 150 \text{ GeV}$	L
$H_T \ge 1000 \text{ GeV}$	L
$50 \text{ GeV} \le p_t \le 600 \text{ GeV}$	L

$m_T = 1 \text{ TeV}$
$p_t^{ ext{lep}} \ge 200 ext{ GeV}$
$p_t^{j,\max} \ge 400 \text{ GeV}$
$p_t^{b,\max} \ge 300 \text{ GeV}$
$H_T \ge 1800 \text{ GeV}$
$50 \text{ GeV} \le p_t \le 400 \text{ GeV}$

ヨト イヨト ヨヨ のへの

Reconstruction done looking for two particles of equal mass

$$m(\ell \nu b_1) = m(j_1 j_2 b_2)$$

Signals and backgro	ounds	s after c	uts ($m_T = 3$	500 GeV)
Process		N _{cut}	N _{peak}		
$Tar{T}$		201.7	125.8		
	+	139.4	45.4	(H)	
	+	58.5	20.9	(Z)	
$t\overline{t}$		1609	240		
W b ar b j j		287	65		
$Zbar{b}jj$		39	10		
tĒj		70	11		

 $m_T = 500 \text{ GeV}, 10 \text{ fb}^{-1} \longrightarrow 10.9 \sigma \text{ evidence} \quad (300 - 660 \text{ GeV})$

 ${}^{*}SM' = t\bar{t}, Wb\bar{b}jj, Zb\bar{b}jj, t\bar{b}j$ ${}^{*}T' = T\overline{T} \to W^{+}b W^{-}\bar{b} \to \ell^{\pm}\nu b\bar{b}jj + H, Z \text{ contributions}$

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ • • • • • •

Signals and backgrounds after cuts			$(m_T = 1 \text{ TeV})$	
Process		N _{cut}	N _{peak}	
$Tar{T}$		58.2	33.5	
	+	39.6	7.8	(H)
	+	21.0	5.1	(Z)
$t\overline{t}$		208	10	
WbĪjj		132	15	
Z b ar b j j		19	1	
tĒj		3	0	

うせん 正正 スポッスポッスロッ

 $m_T = 1 \text{ TeV}, 300 \text{ fb}^{-1} \longrightarrow 9.1 \sigma \text{ evidence} \quad (800 - 1200 \text{ GeV})$

 ${}^{*}SM' = t\bar{t}, Wb\bar{b}jj, Zb\bar{b}jj, t\bar{b}j$ ${}^{*}T' = T\overline{T} \to W^{+}b W^{-}\bar{b} \to \ell^{\pm}\nu b\bar{b}jj + H, Z \text{ contributions}$

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ • • • • • •

More details ...

p_t^{lep} cut substantially reduces the $T\bar{T}(H)$ and $T\bar{T}(Z)$ signals

(Cut required to reduce backgrounds)

Distributions for 2000 events, without cuts

-

1

More details ...

For $m_T = 500$ GeV, $T\bar{T}$ (*H*) and $T\bar{T}$ (*Z*) signals have a sizeable contribution around the m_T peak

Distributions for 2000 events, without cuts

-

More details ...

For $m_T = 1$ TeV, $T\bar{T}$ (*H*) and $T\bar{T}$ (*Z*) signals are widely distributed across the m_T^{lep} and m_T^{had} range

Distributions for 2000 events, without cuts

1

LHC reach for Q = 2/3 singlets

For $m_T = 500$ GeV, 5 σ evidence achieved with 2.1 fb⁻¹

Eventually, $m_T \simeq 1.1$ TeV can be reached with 300 fb⁻¹

J. A. Aguilar-Saavedra Pair production of heavy Q = 2/3 singlets at LHC

LHC reach for Q = 2/3 singlets

If Q = 2/3 singlets not observed at LHC \implies limits on m_T , $|V_{Tb}|$

J. A. Aguilar-Saavedra Pair production of heavy Q = 2/3 singlets at LHC

ヨト イヨト ヨヨ わくや

Conclusions

New *T* singlets with a mass up to ~ 1 TeV can be observed at LHC (with a mass around 500 GeV they will be quickly discovered)

In addition to direct observation, Q = 2/3 singlets may give indirect effects in low energy physics:

- CP asymmetries in *B* decays
- $\delta m_{B_s}, \delta m_D$
- Rare kaon decays

as well as in top physics:

- top FCN decays $t \rightarrow qZ$
- $e^+e^- \rightarrow t\bar{t}$ (ILC)

得 トイヨト イヨト ヨヨ のくや

Anomaly cancellation

$$\operatorname{tr}[t^{a}t^{b}Y] = \frac{1}{2}\delta^{ab}\sum_{q}Y_{q} \longrightarrow \Delta = \left(-\frac{2}{3}\right) + \frac{2}{3} = 0$$

$$\operatorname{tr}[\tau^{a}\tau^{b}Y] = \frac{1}{2}\delta^{ab}\sum_{f,d}Y_{f} \longrightarrow \Delta = 0$$

$$\operatorname{tr}[Y^{3}] = \sum_{f}Y_{f}^{3} \longrightarrow \Delta = \left(-\frac{2}{3}\right)^{3} + \left(\frac{2}{3}\right)^{3} = 0$$

$$\operatorname{tr}[Y] = \sum_{f}Y_{f} \longrightarrow \Delta = \left(-\frac{2}{3}\right) + \frac{2}{3} = 0$$

$$\operatorname{tr}[Y] = \sum_{f}Y_{f} \longrightarrow \Delta = \left(-\frac{2}{3}\right) + \frac{2}{3} = 0$$

Indirect constraints on V_{Tb}

V_{Tb} constrained by the T parameter

$$T = \frac{N_c}{16\pi s_W^2 c_W^2} \left\{ |V_{Tb}|^2 \left[\theta_+(y_T, y_b) - \theta_+(y_t, y_b) \right] - |X_{tT}|^2 \theta_+(y_T, y_t) \right\}$$
[Lavoura, Silva, PRD '93]
[JAAS, PRD '03]

plus other model-dependent new physics contributions (ignored)

Experimentally
$$T = -0.17 \pm 0.12 \quad (U \text{ arbitrary})$$
$$T = 0.12 \pm 0.10 \quad (U = 0)$$

$$\Rightarrow$$
 95% bounds on $|V_{Tb}|$

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三十三 ● ● ●

Indirect constraints on V_{Tb}

Allowed range for V_{Tb} , V_{tb}

Stronger constraints for larger m_T

◆ Back → More

ELE DQC

프 🖌 🛪 프 🕨

m_T dependence of $T\overline{T}$, Tj production

 $V_{Tb} \sim m_t/m_T$ expected from mass matrix diagonalisation ...but $V_{Tb} = m_t/m_T$ too large for $m_T \lesssim 900 \text{ GeV}$

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ • • • • • •

Allowed range for V_{td} , V_{ts}

Experimental data from K, B physics \rightarrow constraints on V_{td} , V_{ts}

Stronger constraints for larger m_T

프 🖌 🖌 프

ELE DQC

 m_T and V_{Tb} dependence of $T\overline{T}$, Tj production Allowed range for CKM elements

Allowed range for X_{tt}

J. A. Aguilar-Saavedra Pair production of heavy Q = 2/3 singlets at LHC