Spin Effects in Hadronic Top-Quark Pair Production

W. Bernreuther RWTH Aachen, Germany

- Polarized t decay
- ullet SM $tar{t}$ spin effects
- ullet Heavy (Higgs) resonances $ightarrow tar{t}$

Physics Issues:

- ullet Unique opportunity to investigate interactions of a bare quark at energies \sim a few 100 GeV
- Dynamics of top production and decay is not explored very precisely so far
- Excellent probe of mechanism of EWSB
- Good probe also for non-SM parity and/or non-SM CP violation (induced, e.g., by non-standard Higgs bosons)
- New decay modes $t \to \tilde{t}, \dots$? Is $t \to b$ decay vertex really (V-A) ?

Exp. analyses require precise SM predictions.

Strong (and electroweak) interactions of top quarks
 can be reliably predicted – asset!

 $m_t \simeq 173 \; {
m GeV}^{'}$ t quark decays mainly into

$$t \rightarrow b + W^+$$

Top decay width in SM: $\Gamma_t = 1.4 \ {\rm GeV}$ \rightarrow lifetime $\tau_t \simeq 4 \times 10^{-25} \ {\rm sec}$

ightarrow t and $ar{t}$ decay before they can form hadronic bound states $(tar{q})$, (tqq')

top quark \sim quasi-free, instable particle \rightarrow top-quark spin phenomena are measurable

t, \bar{t} quarks or pairs of $\bar{t}t$ are produced in a specific spin configuration (which depends on the production dynamics).

In the decays of t, \bar{t} , e.g. $t \to b + W^+$, $\bar{t} \to \bar{b} + W^-$, $W \to \ell \nu_\ell, q\bar{q}'$ this spin information is transfered to the decay products

- \rightarrow polarization of $t,\ \bar{t}$ quarks and $\bar{t}t$ spin correlations are "good" observables
- reliably calculable
- well suited to experimentally check predictions of SM or of its extensions

Decay of polarized $t \rightarrow b + W^+$ in SM:

$$t \rightarrow W^+(h_W=-1)$$
 allowed: $Prob(h_W=-1) \simeq 30\%$

 $t \rightarrow W^+(h_W=0)$ allowed: $Prob(h_W=0) \simeq 70\%$

 $t \to W^+(h_W = +1)$ forbidden for $m_b = 0$

$$m_b \neq 0 + \text{QCD \& EW corrections}$$

 $\longrightarrow Prob(h_W = +1) \simeq 0.1\%$. Do et al. (2003)

Important observables for determining the structure of tbW vertex

Ensemble of top quarks self-analyses its spin polarization via its parity-violating weak decays

$$t \rightarrow W + b \rightarrow \begin{cases} \ell + \nu_{\ell} + b \\ q + \bar{q}' + b \end{cases}$$

Standard V-A charged current interaction \rightarrow charged lepton $\ell=e,\mu,\tau$ is the best analyzer of the top spin.

Decay distribution of (100 %) polarized $t \rightarrow f + ...$

$$\frac{1}{\Gamma_t} \frac{d\Gamma}{d\cos\theta_f} = \frac{1}{2} (1 + c_f \cos\theta_f)$$

where $c_\ell=1$ (maximal), while $c_b=$ - $c_W=$ -0.41

Order α_s QCD corrections

semileptonic decays:

$$t \longrightarrow b \ell^+ \nu_{\ell}, \quad b \ell^+ \nu_{\ell} + \text{gluon}$$

non-leptonic decays:

$$t \longrightarrow b \ \bar{q}_1 \ q_2, \quad b \ \bar{q}_1 \ q_2 + {
m gluon}$$

respectively
 $t \longrightarrow j_b \ j_1 \ j_2, \quad j_b \ j_1 \ j_2 \ j_3$

consider decay distributions

$$\frac{1}{\Gamma_t} \frac{d\Gamma}{d\cos\theta_f} = \frac{1}{2} (1 + p c_f \cos\theta_f)$$

p = polarization degree of t quark ensemble.

Spin analyzer quality factor c_f :

Name of the Control o	ℓ^+	$ar{d}$	\boldsymbol{u}	\boldsymbol{b}	$j_{<}$	$j_{>}$
LO:	1	1	-0.32	-0.41	0.51	0.2
NLO:	0.999	0.966	-0.31	-0.39	0.47	

A.Brandenburg, Z.G. Si, P. Uwer (2002) $j_{<}$ least energetic non-b jet (Durham algorithm) $j_{>}$ most energetic non-b jet

Effects of non-SM interactions:

Examples:

• charged Higgs exchange:

$$t \xrightarrow{H^+} b f_1 \bar{f}_2$$

here $c_b = -0.4 \longrightarrow c_b = 1$, neglecting interferences

ullet small V+A admixture

$$(V-A) + \kappa(V+A)$$

neutrino energy-angle distribution most sensitive to $\kappa \neq 0$

decay distributions including QCD corrections available W.B., M. Fuecker, Y. Umeda (2004)

main reactions

$$p\bar{p},pp \to t\bar{t}X \to \begin{cases} 2\ell + n \geq 2 \text{ jets} + P_T^{miss} \\ \ell + n \geq 4 \text{ jets} + P_T^{miss} \\ n \geq 6 \text{ jets} \end{cases}$$

within SM:

 $t\bar{t}$ production dominated by strong interactions: $q\bar{q} \to t\bar{t}, \ gg \to t\bar{t}, \cdots$

weak decays of t and \bar{t} into semileptonic $t\to b\ell\nu_\ell$ and non-leptonic $t\to bq\bar{q}'$ channels

Status of theory:

spin-averaged cross sections $\sigma(pp,p\bar p\to t\bar t X)$ known to order α_s^3 + resummation of ,,infrared and threshold logarithms"

Nason et al.: Beenakker et al.

Bonciani et al.; Kidonakis, Vogt; Cacciari et al.

MC generators — see talk by S. Slabospitsky

NLO predictions including t, \bar{t} spin d.o.f.

• $2 \rightarrow 6$ and $2 \rightarrow 7$ reactions at NLO QCD:

$$\begin{split} & q\bar{q} \xrightarrow{t\bar{t}} b + \bar{b} + 4 \text{ f (+gluon)}, \\ & gg \xrightarrow{t\bar{t}} b + \bar{b} + 4 \text{ f (+gluon)}, \\ & gq(\bar{q}) \xrightarrow{t\bar{t}} b + \bar{b} + 4 \text{ f +q (\bar{q})}, \quad f = q, \ell, \nu \end{split}$$

unstable t, \bar{t} are narrow resonances: $\Gamma_t \ll m_t$ \to leading pole approximation appropriate (consider top as signal)

 \rightarrow 2 types of radiative corrections:

factorizable

and

nonfactorizable corr.

Differential parton cross sections

$$d\sigma_{i} = d\sigma_{i}^{0} + d\sigma_{i,fact} + d\sigma_{i,nf}$$

$$i = q\bar{q}, gg, gq, g\bar{q}$$

Factorizable corrections: may apply narrow width approximation for $t, \ \bar{t}$:

$$d\sigma_{i,fact} \propto \text{Tr} \left\{ R^{(i)} \rho_t \rho_{\bar{t}} \right\}$$

 $R,~ \rho_t,~ \rho_{ar{t}}$: production and decay density matrices. $d\sigma_{i,fact}$ known for all $i \xrightarrow{tar{t}}$ final states to order α_s^3 W.B., Brandenburg, Si, Uwer (2004)

Nonfactorizable corrections: Beenakker, Berends, Chapovsky

dominant contributions to $d\sigma_{i,nf}$ from semi-soft gluons, $E_g \lesssim \mathcal{O}(\Gamma_t)$; important for t,\bar{t} momentum distributions, t,\bar{t} and $t\bar{t}$ invariant mass distributions

• t, \bar{t} polarization in hadronic $t\bar{t}$ production very small, i.e.,

polarization in production plane due to weak interactions,

"normal" polarization due to QCD absorptive parts

• $t\bar{t}$ spin correlations induced by the production dynamics – i.e., QCD within SM. Strength depends on the choice of reference axes $\to t$, \bar{t} spin quantization axes in on-shell approximation

 $\beta_t = v_t/c \to 0$, then 100% correlation of $t\bar{t}$ with respect to "beam basis" \hat{p} (relevant for Tevatron).

If $\beta_t \to 1$, then 100% correlation with respect to helicity basis (because of helicity conservation of quark-gluon interactions)

ullet For qar q o tar t, choosing "off-diagonal basis" (Mahlone, Parke),

$$\hat{\mathbf{d}} = \frac{-\hat{\mathbf{p}} + (\mathbf{1} - \gamma)(\hat{\mathbf{p}} \cdot \hat{\mathbf{k}}_t)\hat{\mathbf{k}}_t}{\sqrt{1 - (\hat{\mathbf{p}} \cdot \hat{\mathbf{k}}_t)^2(1 - \gamma^2)}}, \quad \gamma = E_t/m_t,$$

there is 100% correlation (at LO) for any β_t :

$$<4(\hat{\mathbf{d}}\cdot\mathbf{s_t})(\hat{\mathbf{d}}\cdot\mathbf{s_{\bar{t}}})>=1$$

ullet For $gg
ightarrow t ar{t}$ no axis exists that yields 100 % correlation.

At Tevatron ($\sim 85\% \, q\bar{q}$, $\sim 15\% \, gg$), beam basis $\hat{\bf p}$ essentially as good as off-diagonal basis $\hat{\bf d}$

 $t\bar{t}$ spin correlations with respect to arbitrary reference axes $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$:

$$<4(\hat{\mathbf{a}}\cdot\mathbf{s_t})(\hat{\mathbf{b}}\cdot\mathbf{s_{\bar{t}}})> = \mathcal{A}$$

where ${\cal A}$ is the tar t double spin asymmetry

$$\mathcal{A} = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)}$$

For on-shell t, \bar{t} : $\hat{\mathbf{a}}, \hat{\mathbf{b}} \leftrightarrow \text{spin axes}$.

Choose in the following:

$$\begin{split} \hat{\mathbf{a}} &= \hat{\mathbf{k}}_t, \quad \hat{\mathbf{b}} &= \hat{\mathbf{k}}_{\bar{t}} \quad \text{(helicity basis)}, \\ \hat{\mathbf{a}} &= \hat{\mathbf{b}} &= \hat{\mathbf{p}} \quad \text{(beam basis)}, \\ \hat{\mathbf{a}} &= \hat{\mathbf{b}} &= \hat{\mathbf{d}} \quad \text{(off-diagonal basis)}. \end{split}$$

Predictions at level of t, \bar{t} decay products

Consider, e.g., dilepton channels $pp, p\bar{p} \to t\bar{t}X \to \ell^+\ell'^- X$.

$$\int d\sigma = \sum_{ij} \int dx_1 dx_2 f_i^{h_1}(x_1, \mu_F) f_j^{h_2}(x_2, \mu_F)$$
$$\times \{ d\Phi_6 |\mathcal{M}_6|_{LO+NLO}^2 + d\Phi_7 |\mathcal{M}_7|_{NLO}^2 \}$$

• double distribution:

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta_+ d \cos \theta_-} =$$

$$\frac{1}{4}\{1 + B_1 \cos \theta_+ + B_2 \cos \theta_- - C \cos \theta_+ \cos \theta_-\}$$

 θ_+ (θ_-) is angle between direction of flight of $\ell^+(\ell^-)$ in t (\bar{t}) rest frame and the reference axis $\hat{\mathbf{a}}$ $(\hat{\mathbf{b}})$.

 $B_{1,2} \leftrightarrow$ polarization of t, \bar{t} . In SM: $|B_1|, |B_2| < 1\%$ $C \leftrightarrow t\bar{t}$ spin correlations.

All-order formula (factorizable corrections):

$$C = c_+ c_- \mathcal{A}$$

Another useful observable for detecting $t\bar{t}$ spin correlations:

• opening angle distribution (W.B. et al.)

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\varphi} \, = \, \frac{1}{2} \left(1 - D \, \cos\varphi \right)$$

e.g., for dilepton channels

$$pp, p\bar{p} \to t\bar{t}X \to \ell^+\ell'^-X$$

 $\varphi = \angle(\ell^+,\ell'^-)$ in resp. t, \bar{t} rest frames.

Above distributions apply also to lepton + jets (& all-jets) channels For these channels, $j_{<}$ is used, in the following, as top-spin analyzer in non-leptonic t decays

$$c_{j<} > |c_b|,$$

Predictions

PDF input: CTEQ6L and CTEQ6.1M

	Tevatron, $\sqrt{}$	$\sqrt{s} = 1.96 \text{ TeV}$	LHC, $\sqrt{s}=14$ TeV		
$\ell\ell$	LO	NLO	LO	NLO	
C_{hel}	-0.471	-0.352	0.319	0.326	
$\mathrm{C}_{\mathtt{beam}}$	0.928	0.777	-0.005	-0.072	
$\mathrm{C}_{\mathrm{off}}$	0.937	0.782	-0.027	-0.089	
D	0.297	0.213	-0.217	-0.237	
$\overline{\ell+j}$		207.0			
$C_{ m hel}$	-0.240	-0.168	0.163	0.158	
$\mathrm{C}_{\mathrm{beam}}$	0.474	0.370			
$\mathrm{C}_{\mathrm{off}}$	0.478	0.372	¥ 9	8	
D	0.151	0.101	-0.111	-0.115	

W.B., A. Brandenburg, Z.G. Si, P.Uwer, NPB690 (2004)81

- results available also for all-jets channels
- ullet good choices: beam basis for Tevatron, helicity basis and D for LHC (somewhat better basis exists, Uwer (2005))
- ullet effects enhanced by suitable cuts on $M_{tar{t}}$
- ullet dependence on PDFs, as qar q and gg contributions enter with different sign.

Yet results almost unchanged when CTEQ6.1M → MRST2003

- recent LHC study of dilepton and lepton + jets events at the detector level:
- F. Hubaut et al. (2005): $\delta D \simeq 4\%$, $\delta C_{hel} \simeq 6\%$

EW corrections, single spin asymmetries

electroweak corrections to hadronic $t\bar{t}$ production:

LO:
$$q\bar{q} \rightarrow \gamma^*, Z^* \rightarrow t\bar{t}$$

NLO: mixed QCD-EW $\mathcal{O}(\alpha\alpha_s^2)$ corrections to $q\bar{q},\ gg \to t\bar{t}$

Beenakker et al., Kao, Ladinsky, Yuan

recent addition: box contributions + real gluon radiation

W.B., Fuecker, Si (2005); Kühn, Scharf, Uwer (2005)

EW contributions to $\sigma_{t\bar{t}}$ swamped by QCD uncertainties might be visible in $\frac{1}{\sigma}\frac{d\sigma}{d\,M_{t\bar{t}}}$ for $M_{t\bar{t}}>1$ TeV (large EW Sudakov logs)

EW corrections \rightarrow P-violating single spin asymmetries, i.e., t, \bar{t} polarization in production plane

$$<\mathbf{s_t}\cdot\mathbf{\hat{p}}>$$
, $<\mathbf{s_t}\cdot\mathbf{\hat{k}_t}>$

and likewise for \bar{t}

 \rightarrow leptonic asymmetries in $\ell\ell$ and $\ell+j$ channels:

$$pp, p\bar{p} \to t\bar{t}X \to \ell^+ + X$$

Angular distributions:

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{+}} = \frac{1}{2} (1 + B\cos\theta_{+})$$
$$\theta_{+} = \angle(\ell^{+}, \hat{\mathbf{a}})$$

e.g., $\hat{a} = \text{beam axis (Tevatron)}$, helicity axis (LHC)

small effect: |B| < 1%

Kao, Wackeroth; W.B., Fuecker, Si

may be enhanced somewhat by choosing suitable inv. mass bins

definite SM prediction \longrightarrow good observables to search for non-SM parity violation in $t\bar{t}$ production

Heavy resonances

Extensions of SM, e.g. supersymmetric extensions, top-condensation models, ...

ightarrow heavy resonances $arphi_J$ that strongly couple to top quarks

 φ_J : could be a Higgs boson, a bound state,... E.g., 2HDMs or minimal supersymmetric extension of SM:

3 neutral Higgs bosons
$$h_1, h_2,$$
 $J^{PC} = 0^{++}$ $A,$ $J^{PC} = 0^{-+}$

 h_2, A may be heavy, m > 300 GeV $A \not \rightarrow W^+W^-, ZZ$ in lowest order, but A (like $h_{1,2}$) can strongly couple to top quarks

Consider $\varphi_J = h_2, A$:

$$gg \longrightarrow t\bar{t} \longrightarrow final state$$
 $gg \longrightarrow \varphi_{J} \longrightarrow t\bar{t} \longrightarrow final state$

interference of amplitudes leads to typical peak-dip resonance structure

LHC: $pp o A + X o t \bar t + X o \ell +$ Jets

Example: $m_A=400$ GeV, $\Gamma_A=12$ GeV

 $t ar{t}$ invariant mass distribution

$$M_{t\bar{t}} = \sqrt{(p_t + p_{\bar{t}})^2}$$

W.B., Flesch, Haberl

If resonance φ will be found in $M_{t\bar{t}}$ distribution $\to t\bar{t}$ spin correlations will be useful tool for determining properties of φ

consider reaction gg o arphi o tar t

• if
$$\varphi$$
 scalar, $J^{PC}=0^{++}$
 $\rightarrow t\bar{t}$ in 3P_0 state
 $\rightarrow <\mathbf{s}_t\cdot\mathbf{s}_{\bar{t}}>=1/4$

ullet if arphi pseudoscalar, $J^{PC}=0^{-+}$ $ightarrow t ar{t}$ in 1S_0 state $ightarrow <\mathbf{s}_t\cdot\mathbf{s}_{ar{t}}>=-3/4$

only valid if non-resonant $t\bar{t}$ background is neglected. With $t\bar{t}$ background \to Fig.

observable for dilepton channels:

$$<\mathbf{s_t}\cdot\mathbf{s_{\bar{t}}}> o \hat{\ell}_+\cdot\hat{\ell}_- = \cos\varphi$$
 $o frac{1}{\sigma} frac{d\sigma}{d\cos\varphi}$ sensitive to scalar \leftrightarrow pseudoscalar

3806M=M# = 4506W

In extensions of SM, Higgs boson self-interactions are in general not CP-invariant → neutral spin-zero mass eigenstates do not have a definite CP parity

e.g. 2HDM or minimal SUSY: mixing of $h_1, h_2 \leftrightarrow A \rightarrow 3$ neutral mass eigenstates φ with CP-violating Yukawa couplings;

e.g. couplings to top quark:

$$\mathcal{H}_Y = (\sqrt{2}G_F)^{1/2} m_t (a_t \bar{t}t + b_t \bar{t}i\gamma_5 t) \varphi$$

If
$$\gamma_{CP} \equiv -a_t b_t \neq 0$$

then
$$H_Y = \int d^3x \, {\cal H}_Y$$

violates CP

Consequences for $gg \rightarrow \varphi \rightarrow t\bar{t}$:

if $\gamma_{CP} \neq 0$, then CPV spin correlation

$$<\hat{\mathbf{k}}_t \cdot (\mathbf{s}_t \times \mathbf{s}_{\bar{t}})> = \gamma_{CP} \beta_t/(b_t^2 + a_t^2 \beta_t^2)$$

and CPV asymmetry in longitudinal polarization

$$<\hat{\mathbf{k}}_t\cdot(\mathbf{s}_t-\mathbf{s}_{\bar{t}})>\neq 0$$

These spin corr./asymmetry induce CPV angular correlations/asymmetries among the $t\bar{t}$ decay products. Consider, e.g., the channels

$$pp \to \varphi X \to t\bar{t}X \to \begin{cases} \ell^+ + jets \\ \ell^- + jets \end{cases}$$

then

$$\hat{\mathbf{k}}_t \cdot (\mathbf{s}_t - \mathbf{s}_{\bar{t}}) \quad \to \quad \mathcal{O} = \cos \theta_+ - \cos \theta_-$$

with angles
$$\theta_+ = \angle(t, \ell^+)$$
, $\theta_- = \angle(\bar{t}, \ell^-)$

W.B., A. Brandenburg

 $<{\cal O}>$ als a function of $t\bar{t}$ invariant mass, Example: $m_\varphi=$ 400 GeV, $\Gamma_\varphi=20$ GeV and $\gamma_{CP}=1$

Observables which are more robust experimentally:

e.g. for dilepton channels

$$t\bar{t} \rightarrow \ell^+ \ell'^- + \dots$$

observable

$$\mathcal{O} = \cos \theta_+ - \cos \theta_-$$

corresponds to asymmetry

$$A = \frac{N_{\ell\ell}(\mathcal{O} > 0) - N_{\ell\ell}(\mathcal{O} < 0)}{N_{\ell\ell}}$$

Results at the level partonic final states: if Yukawa couplings are such that $|\gamma_{CP}| = |a_t b_t| > 0.2$ and $m_{\varphi} \sim 300$ - 500 GeV \rightarrow statistically significant effects (5 σ)

Conclusions

- ullet Top-quark spin physics \leftrightarrow physics of a bare quark remains to be fully explored both in $tar{t}$ and in single top production & decay
- ullet tar t production: spin correlations, t and ar t polarization: SM predictions at NLO (QCD and EW) precision measurements at LHC feasible ullet important tools to explore the dynamics of top quarks

Open issues (theory):

- ullet efficient NLO MC generator with t, \bar{t} spin d.o.f. included
- effect of gluon resummation on spin correlations
- more systematic studies of non-SM top-spin effects