Top Physics at the LHC introductory talk

Université Blaise Pascal

LHC: A new Factory for Top quarks

- The Top quark is studied with an increasing level of precision at Tevatron
 - However most of the measurements are still statistically limited
- Data taking will continue up to 2009 at Tevatron allowing experiments to perform precision measurements on the Top.

In the meantime the Large Hadron Collider will enter into operation.

 The LHC will open a new opportunity for precision measurements of Top quark properties.

The Large Hadron Collider

Possible LHC startup scenario

Machine startup in 4 phases gradually to nominal L

Summer 20	007 first collisions	
2007	(43+43 to 156+156 bunches)	1/100 nominal L
2008	(936+936 bunches; 75ns)	1/10 nominal L
2009-2010	(2808+2808 bunches; 25ns)	up to nominal L

http://lhc-commissioning.web.cern.ch/lhc-commissioning/ (Mike Lamont)

A lot of uncertainties here: a more precise schedule in spring 2006

expect 1 - 10 fb-1 /expt on tape by end 2008

Cross-Sections at the LHC (examples)

10⁹

2

2

Top Production @ LHC

1y@10 ³²	1y@10 ³³
800 K	8 millions
2007?	2008?

At nominal Luminosity,

~ One top pair produced per second

LHC is a Top factory

Year	Max Lumi	Top pairs Produced /day	Top pairs(l+j) after selection /day
2007	10 ³²	7000	~20-100
2008	10 ³³	70000	~200-1000
2009- -2010	10 ³⁴	700000	~2000-10000

Detectors Status

Detectors will not be complete in 2007

- ATLAS because of staging TRT coverage over |η|<2 instead of 2.4
- CMS pixel and end-cap ECAL installed during first shutdown
- BOTH reduced trigger bandwidth due to deferrals on HLT processors (~50% of full capability)

Small impact on performances at low L (except for B physics)

Proto and parts tested with test beams

To achieve the detector goal performance (dead channels mapping, alignement, DAQ...)

- Pre collision phase
 - Cosmic runs (end 2006-spring 2007)
 - Beam-gas events & beam-halo muons

Which detector performance on day one ?

	Expected performance day 1	Physics samples to improve (examples)
ECAL uniformity e/y scale	~ 1% (ATLAS), 4% (CMS) 1-2 % ?	Minimum-bias, Z→ ee Z → ee
HCAL uniformity Jet scale	2-3 % < 10%	Single pions, QCD jets Z (\rightarrow II) +1j, W \rightarrow jj in tt events
Tracking alignment	20-500 μm in Rφ?	Generic tracks, isolated μ , Z $\rightarrow \mu\mu$

Ultimate statistical precision achievable after few days of operation. Then face systematics E.g. : tracker alignment : 100 μ m (1 month) \rightarrow 20 μ m (4 months) \rightarrow 5 μ m (1 year) ?

Impact on b tag : from 20 μ m to 5 μ m R_u improved by a factor 1.5

physics samples to improve performances

D. Pallin TOP2006 ; Coimbra - 01/2006

Early Top studies 2007 (2008)

- Top production is an ideal laboratory for initial studies
 - Lepton+jet channel contains :
 - 2 b jets
 - 2 light jets
 - 1 lepton+ 1 v
 - Involves many detector properties :
 - Lepton measurements and Identification
 - Jet reconstruction and calibration
 - Missing transverse Energy
 - b-tagging

- Two Aspects of early Top studies ($\leq 1 \text{ fb}^{-1}$)
 - Top quark useful as calibration tool
 to give feedback on detector performance
 - Initial , measurement of mass and cross section

Early Top studies ($\leq 1 \text{ fb}^{-1}$) 2007 (2008) Physics goals and potential in the first year

- Observation of Top signal should be very fast
- In a few weeks, a clean sample of several thousands top-quarks will be available for physics measurements and detector calibration
- Road to an initial measurement of Top mass (5-7 GeV?) and cross section (15-20%?)

Note : statistical error negligible after few weeks run

Early Top studies ($\leq 1 \text{ fb}^{-1}$)

Exploiting ttbar signal : get the light jet energy scale

- A clean W->jj sample (up to 80%) can be extracted from l+jets Top events
- shift of the W mass peak related to the absolute energy scale

Set extract absolute jet energy scale $\alpha(E_{jet})$

from data (jet E_T >40 GeV) without calibration function hypot.

2-3% reachable on absolute scale in 2007

D. Pallin TOP2006 ; Coimbra - 01/2006

Top Physics at the LHC: goals @ 10fb-1

Does the Top quark behaves as expected in the SM?

⁴⁰⁰nbra - 01/2006

Top pair production

Top mass, cross section , W&Top polarisations ≈ same event selection

 stat error negligible on measurements, syst Limitations from jet scale FSR, PDF, lumi

Top properties measurements

- $\hfill\square$ Test the top decay with W Polarisations F0 F^L F^R (1-2%)
- Test the Top production with ttbar spin correlations
- ttbar invariant mass distribution

channel	Selected	CMS
	@10fb ⁻¹	top _{hol} + bg ■top _{hol} (W _{inp} →τ≀)]
lvb jjb	70K	
lvb jjb (high pt)	3,6K	11WW 11W* 99-10(+47)
lvb lvb	20K	- ge_1W
jjb jjb (high pt)	3,4K	
	ć	0 100 200 300 4 m (GeV

	Precision	Tevatron @2fb ⁻¹	LHC goals 10fb ⁻¹
l	Top Mass	<2%	<1%
l	Cross section	10%	<10%?
l	Top properties BR Wb	20%	
l	W pol Spin corr	40%	2% 4%
	Charge	Exclude -4/3	Exclude-4/3 Improvex100
	Single Top	5g discovery?	Measure separately cross sections
	Understand Top as BKG		

Top Physics at the LHC: goals @ 10fb-1

Does the Top quark behaves as expected in the SM?

Single Top :

- Use leptonic decay of the W
- Measure cross sections separately
- Even if statistical precision range from ~2% (t channel) to ~8% (s channel), studies will be mainly on BKG understanding to assess systematics which are dominant.
- First results are expected with 30fb-1. cross sections and vtb..

channel	Selected @10fb-1
t channel	2,5K
WT channel	1,5K
s channel	0,5K

Precision	Tevatron @2fb ⁻¹	LHC goals 10fb ⁻¹
Top Mass	<2%	<1%
Cross section	10%	<10%?
Top properties BR Wb W pol Spin corr Charge fcnc	20% 40% Exclude -4/3	2% 4% Exclude-4/3 Improvex100
Single Top	5 0 discovery?	Measure separately cross sections
Understand Top as BKG		

Top studies with 10fb⁻¹ and more

• This session :

More details in dedicated talks on Top at LHC :

Торіс	See talk from
Tools	V. Kostyukhin
Top Mass	AI Etienvre,N Giokaris,
(all channels)	J Heyninck
Top production	R. Chierici,B Kersevan
Top properties	B Resende
Single Top	A. Giammanco
Beyond SM	N. Castro
Understand Top as BKG	M. Zanetti, S Paktinat

Summary

LHC is on the road

- First collisions in Summer 2007
- Initial measurements in 2 years from now
- □ First precision measurements in 3 years from now with 1-10fb⁻¹
- A huge work needed prior to initial measurements
 - to understand the detectors & control systematics(BKG, PDF..)
 - Early top signals will also be critical to commissioning the detectors
- LHC has a great potential for Top physics
- Some of the earliest LHC physics results, and earliest sensitivity to new physics, could come from top physics
 - An enormous amount of Top quarks will be produced
 1 day at 10³³ ≈ 10 years at Tevatron for SM processes
 Measurements with negligible stat uncertainties
 - Improvement of Top understanding & window BSM

BACKUP

	ATLAS	CMS
MAGNET (S)	Air-core toroids + solenoid in inner cavity Calorimeters outside field 4 magnets	Solenoid Calorimeters inside field 1 magnet
TRACKER	Si pixels+ strips TRD \rightarrow particle identification B=2T $\sigma/p_T \sim 5x10^{-4} p_T \oplus 0.01$	Si pixels + strips No particle identification B=4T $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E}$ uniform longitudinal segmentation	PbWO ₄ crystals $\sigma/E \sim 2-5\%/\sqrt{E}$ no longitudinal segmentation
HAD CALO	Fe-scint. + Cu-liquid argon (10 λ) $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$	Brass-scint. (> 5.8 λ +catcher) $\sigma/E \sim 100\%/\sqrt{E \oplus 0.05}$
MUON	Air $\rightarrow \sigma/p_T < 10$ % at 1 TeV standalone; larger acceptance	Fe $\rightarrow \sigma/p_T \sim 5\%$ at 1 TeV combining with tracker