(What We Can Learn from) Top at Future Colliders

Lynne H. Orr University of Rochester

> Top2006 Coimbra, Portugal 14 January 2006

Outline

- 1. Introduction: Top in the SM
- 2. Electroweak Symmetry Breaking in the SM
- EWSB and Top Beyond the SM SUSY Little Higgs Technicolor and its descendents Extra dimensions
- Top and New Physics at Future Colliders: Summary LHC ILC
- 5. Summary and Conclusions

Introduction: Top in the SM

• Top is 10 years old!!

(pause to reflect on passage of time, mortality, etc...)

- Is it Standard Model top?
 - q = +2/3 e isospin = 1/2 color triplet SM gauge couplings to γ, Z, W, g

spin = 1/2 I₃ = −1/2 V_{tb} ≅ 1 CKM mixing

- ...we hope not entirely!
- Huge mass = 175 GeV
 Life as a quark: decays before hadronizing Yukawa coupling λ_t ~ 1: Coincidence ?!

t **T** Production

Hadron colliders: strong production

Lepton colliders (ILC): electroweak production

 $t\gamma$, tZ couplings

Lynne H. Orr

Single Top Production

- Hadron colliders: electroweak production
 - Three modes:
 - T-channel: q b \rightarrow q' t
 - S-channel: q q' \rightarrow t \overline{b}
 - Associated: g b \rightarrow t W⁻

Sensitive to tWb coupling $(|V_{tb}|)$

Top Decay

• SM: BR into W⁺b ~ 100%

sensitive to coupling to Wb

- $\Gamma_t = 1.4 \text{ GeV} >> \Lambda_{QCD}$. So top decays before hadronizing and spin info gets passed to decay products.
- Total width << exp'tal resolution; hard to measure (but see e+e- threshold)

→ can't measure magnitude of Wtb coupling

- Decay measures structure of Wtb coupling (V-A)
- Top kinematic reconstruction measures m_t
- Other decays CKM or loop suppressed

Other SM top Processes

• tt H production (LHC, ILC)

ttγ, ttZ couplings

Electroweak Symmetry Breaking in the SM

 Higgs mechanism breaks EW symmetry and gives mass to fermions via Yukawa interaction.

And why do we think top is special?

Higgs couples to fermions according to (v = Higgs vev = 246 GeV)

 $\lambda_{f} = m_{f} \sqrt{2} / v$ \rightarrow $\lambda_{t} \sim 1$

• Hierarchy problem: Higgs mass gets quadratically divergent corrections:

• Λ is momentum cutoff in loop integral; in SM, cutoff is where gravity becomes strong: $\Lambda \sim M_{Pl} \sim 10^{19}$ GeV. But we expect $m_h \sim$ weak scale $\sim 10^2$ GeV.

This hierarchy in scales leads to fine tuning over 17 orders of magnitude in energy. Unnatural!

Solutions to the Hierarchy Problem

Good news: many candidate solutions. They come in roughly 3 classes:

1. Weakly coupled: introduce new particles to cancel SM divergences

- Cancellation requires new particles to be related to SM particles via symmetries (hence "partners")
- If we require \leq 10% fine tuning, must have scale for top partners < ~2 TeV
- All other SM particles allow higher scales
 - ➔ first TeV-scale new physics likely associated with top!
- Examples: SUSY, Little Higgs

2. Strongly coupled: new strong dynamics enters at TeV scale

- New dynamics gives physical TeV-scale cutoff
- Higgs is composite; not fundamental degree of freedom above Λ
- Top typically enters uniquely due to its large mass
- Examples: Technicolor and its descendents

Solutions to the Hierarchy Problem, cont.

- 3. Modified spacetime: introduce extra spacetime dimensions to lower Λ
 - Extra space dimensions lower effective M_{PI}:

 Λ is still M_{grav}, but M_{grav} ~ TeV

- No fine tuning after all!
- Examples: ADD, RS, UED, Higgsless

... and of course, you may mix and match solutions!

Each of these solutions:

- typically gives rise to new TeV-scale physical degrees of freedom which can potentially be produced at the LHC and/or ILC
- affects top phenomenology
- Has to contend with the astounding success of the SM, especially in precision electroweak measurements

Supersymmetry

Features:

- Two Higgs doublets (5 physical Higgses: h⁰, H⁰, H⁺⁻, A⁰)
- Each SM particle gets a partner with opposite spin-statistics (squarks, sleptons, gauginos, higgsinos): no fine-tuning
- Heavy top gives EWSB automatically
- Gauge coupling unification possible
- String theory wants (high energy) SUSY
- Stop is typically lightest squark
- Discrete symmetry R-parity in some models (including MSSM)
 - SUSY partners must be pair produced
 - Lightest partner (LSP) is stable and therefore dark matter candidate
- Many parameters (~100) but predictive
- m_t < 160 GeV rules out MSSM

Supersymmetry, cont.

Impact on top phenomenology:

M_h increases with m_t

- Modification (suppression) of Top Yukawa coupling; measure in ttH at LHC, ILC
- Also: Look for top in decays of heavy partners

Coupling to H⁺b: look for t→H⁺b decays

• Curves of constant BR; shaded area excluded at TeVatron

Little Higgs Models

Features:

- Higgs field is Nambu-Goldstone boson resulting from breaking of continuous global symmetry
- Special symmetry breaking structure ensures cancellation of quadratic divergences in m_H without SUSY
- Higgs divergences cancelled by particles with same spin-statistics as in SM
- Littlest Higgs: simplest version; new TeV-scale particles:
 - Vector-like top partner T, 1-2 TeV
 - EW Gauge boson partners
 - Weak triplet scalar field
- Model-dependent: Symmetry group, exact new particle content
- Discrete symmetry T-parity introduced in some models to solve ``little hierarchy" (1-2 TeV scale for new physics vs. > 5-7 TeV from precision EW)
 - New particles must be pair produced (no tree-level exchange)
 - Lightest partner (LTP) is stable and therefore dark matter candidate
- T, W', Z' (and other new particles, if they exist) should be produced at LHC, ILC (pairs only if T-parity conserved)

Little Higgs, cont.

Impact on top phenomenology:

- Vector-like T mixes with t_L , modifying couplings to W, Z (magnitude, structure)
- New gauge bosons also mix (but not in T-parity conserving models), also modify t couplings to W, Z

 Models predict relation between masses, couplings, symmetry breaking scale

Lynne H. Orr

Technicolor and its descendents, cont.

Impact on top phenomenology:

 Resonant top-antitop production via new gauge bosons: look at tt

Future EW Physics at the Tevatron, TeV-2000 Study Group

• LHC reach ~4-5 TeV

• Toppions in single top production

• Topflavor W' in single top production

Top2006, 14 Jan. 2006

Modified Spacetime

Features:

- Large extra space dimension(s) reduce effective gravity scale to ~TeV
 - Large means compared to M_{Pl}^{-1}
- String theory wants extra dimensions
- Models characterized by:
 - extra dimensions warped or flat
 - where SM particles live
- Common feature: Fourier modes of bosonic fields → Kaluza-Klein excitations of gravitons (and sometimes gauge bosons)
- Phenomenology model dependent
 - ADD: Flat extra dim's; SM particles confined to usual 3+1 D ("brane"); gravitons propagate in all dimensions ("bulk"), making gravity look weak (effective M_{Pl} reduced to order TeV). Details depend on size and number of extra dimensions. Gravitons escaping into bulk give missing energy signal
 - **RS**: Warped extra dim's;

Modified Spacetime, cont.

- **ADD**: $D = 4 + \delta$ δ extra space dimensions
 - SM particles confined to usual 3+1 D ("brane")
 - Gravitons propagate in extra dimensions ("bulk"), making gravity look weak:
 - $M_{grav}^2 = M_{Pl}/(2\pi R)^{\delta}$
 - R = compactification radius (size of extra dimension)
 - E.g. for $M_{grav} = 1$ TeV and $\delta = 4$, $R^{-1} = 20$ keV
 - Gravitons escaping into bulk give missing energy signal
- RS: Warped extra dimensions
 - Hierarchy explained in analogy with gravitational redshift in curved space
 - 2 branes connected by 1 extra dimension
 - SM particles on one brane, graviton wave function peaked on the other; small overlap with SM brane makes gravity look weak
- **UED**: All SM particles propagate uniformly in the bulk (flat ED)
 - Momentum conservation in extra dimensions
 - Discrete symmetry: KK parity
 - KK particles produced only in pairs
 - Lightest KK stable → dark matter candidate
 - Gauge unification
- Others: SM fields in warped ED, Higgsless, SUSY in ED, ...

Modified Spacetime, cont.

Impact on top phenomenology:

- Top is not so special here
- Top pheno: pair production via s-channel KK production
- Other collider signatures:
 - (ADD):
 - $pp \rightarrow \gamma E_{miss}$, jet E_{miss}
 - e+e- $\rightarrow \gamma E_{miss}$, Z _{Emiss}
 - "graviscalars" mix with Higgs, modify SM invisible decay width
 - (RS):
 - Resonant KK production: peaks in dilepton, diphoton inv. mass spectra
 - Effective contact interactions
 - · Other details very model dependent
 - Probe up to 1.5 GeV at LHC
 - (UED): pair production of KK modes;

probe up to ~500 GeV

• RS matter in bulk \Rightarrow mostly t_R shift

Top at LHC: Summary

Plus: Single top Associated production

Top2006, 14 Jan. 2006

σ_s - σ_t Plane

Top at ILC: Summary

Plus: Single top Associated production

Top2006, 14 Jan. 2006

ttV Production: Comparison to e⁺e⁻

coupling	LHC, 300 fb^{-1}	e^+e^- [19]
$\Delta \widetilde{F}_{1V}^{\gamma}$	$^{+0.043}_{-0.041}$	$^{+0.047}_{-0.047}$, 200 fb $^{-1}$
$\Delta \widetilde{F}^{\gamma}_{1A}$	$^{+0.051}_{-0.048}$	$^{+0.011}_{-0.011}$, 100 fb $^{-1}$
$\Delta \widetilde{F}_{2V}^{\gamma}$	$^{+0.038}_{-0.035}$	$^{+0.038}_{-0.038}$, 200 fb $^{-1}$
$\Delta \widetilde{F}_{2A}^{\gamma}$	$^{+0.16}_{-0.17}$	$^{+0.014}_{-0.014}$, 100 fb $^{-1}$
$\Delta \tilde{F}^Z_{1V}$	$^{+0.43}_{-0.83}$	$^{+0.012}_{-0.012}$, 200 fb $^{-1}$
$\Delta \tilde{F}^Z_{1A}$	$^{+0.14}_{-0.14}$	$^{+0.013}_{-0.013}$, 100 fb $^{-1}$
$\Delta \tilde{F}^Z_{2V}$	$^{+0.38}_{-0.50}$	$^{+0.009}_{-0.009}$, 200 fb $^{-1}$
$\Delta \widetilde{F}^Z_{2A}$	$^{+0.50}_{-0.51}$	$^{+0.052}_{-0.052}$, 100 fb ⁻¹

Conclusions

- Top is unique as a laboratory for EWSB and fermion masses.
- Its huge mass may be a clue that it is special, and it plays an important role in the SM and beyond.
- We have many candidates for new physics signals at the LHC and ILC, and many things to study
- But we also need to keep our eyes open for the unexpected, which may be more interesting still!