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A3

threshold scan

tt near threshold: E = /s — 2m ~ mv? ~ ma?
Problem with three scales: m; ' ~ mv ~ mas; E ~ mv? ~ ma?

Hierarchy of scales: m > mv > mv? > Aqcop
fixed order:

o(=R) = vzn: (%)” « {1 (LO): as, v (NLO): a2, 02, asv (NNLO)}
resummed:

v

oc=v s\ " as Inv)! Qlg, U a2, v?, asv
Zn:( ) El:( Inv)! x {1(LL) (NLL) (NNLL)}
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A3

fixed order

® exploitas < 1and v < 1 — double expansion

® identify modes [Beneke, Smirnov] = asymptotic expansion (method of regions)
hard p* ~ m
soft pt ~ mu

potential  p® ~ mw?

; P~ mu
ultrasoft  p* ~ muv?

® integrate out ‘unwanted’ modes (final state described by potential quarks and
ultrasoft gluons):
QCD (h,s,p,u) — NRQCD (s,p,u)— pNRQCD (p|q4,u)

® matching of currents
® done to NNLO [Beneke et.al; Hoang et.al; Melnikov et.al; Yakovlev; . . .]

® use threshold mass, not pole mass [Bigi et.al; Beneke; Hoang et.al; Pineda]
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A3

fixed order

&

In pPNRQCD: Schrédinger equation:

~J 32 B 3
Fn " Heb (—8— FV(E— ) - E> G(F, 7', B)

_ where

V(r) = —Cias +
s ~ TV P S NRQCD

For tt production: E = E 4+ iI';
not correct at NNLO [Fadin, Khoze]

fhys ~ TV us PNRQCD
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A3

fixed order

— stabilization of peak position
— no improvement in normalization

here: PS-mass

_ 1 [HF dS(jV
mps(pr) =m+ 5/ (2m)8 * Coul

parameters:

m: = 175 GeV,

I's =1.40 GeV,

aS(Mz) = 0.118,

scale of as: 15, 30, 60 GeV
pur = 20 GeV

LO

NLO

NNLO

1.25

0.75

0.5

0.25

E = \/§—2mps in GeV
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resummation of ln v

® resummation of In v is mandatory for satisfactory description of normalization of
cross section

® done at “NNLL” using vYNRQCD [Hoang, Manohar, Stewart, Teubner]

® vNRQCD fixes the correlation between the scales from the start j,s = p2/m

® here | present an alternative evaluation of Ry n 11, keeping the two-stage
matching (work with A.Pineda):

® QCD — NRQCD, RGI coefficients for R 1,1, known [Bauer, Manohar;
Pineda]

® NRQCD — pNRQCD, RGI coefficients for Ry n 1. known [Pineda]
® the correlation between the scales is taken into account in the RG solutions

® matching of current: known at NLL, but not yet fully at NNLL [Manohar,
Stewart, Hoang; Pineda]

® potential loops: higher dim operators mix back into current matching coeff. =
have to take into account the NLL running of NRQCD operators in RGE.

® done (so far) only for the spin dependent term [Penin, Pineda, Steinhauser,
Smirnov], thus NNLL = “NNLL’
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A3

“nnll”

We use dimensional regularization throughout, perform all calculations in momentum
space and always use MS-subtraction [Beneke, AS, Smirnov]

dd—* dd—v B
G (7,7, E) = / P 2P &,
F=F! =0 (2m)4 (2m)@
éc —*, —'/,E — 2 d(s(d) = = B
(5,7, E) (2m)%6' (p P)E_ﬁQ/m
4 s
+ — _‘WCI:_:az -+ finite
(E—p%2/m) (P —p")" (E—p'2/m)
asCrm?2 [ 1 1. —4mE 1
Gc 0,0,E — - _]. - 1_>\
(0,0, E) o (2/\+2n 5 U ))

where A\ = Cp as/(24/—E/m) ; This sums all potential gluon (ladder) diagrams

L2 72— 52 R
require “D-dim” operators e.g. — (—) —1land ¢'B* = Z[O'Z,O'J]sz

273 q>
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A3

Einnllﬂ

The renormalization group improved pNRQCD potential: [Pineda, AS]

VNNLL =

a~

—A4AnCp

q2
w06 -9+
mq1+2e 7T3/2F2(1 _ 26)

2rCpDY) 2 42 7CpDE) ([ — 2\
_ i F 7 ) 3
m2 qZ m2 qQ

37CpD?)  4nCpDE

—CpC DY

S%,871[8%, 8]

_|_

m2 dm?
47TCFD‘(S,21)2 s i . i j i q?“qj
e (s syl s (07 - a 1)

- <P ([si, 8]+ [},5])
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A3

“nnll”

and the current: (Z exchange not included)

QY Q(0) = c1x' o 2XTO' (D)2 + ...

evaluate insertions [Beneke, AS, Smirnov]

dd
5G (0 O E) /H GC(p17p2)E)5V(p27p3)GC(p37p4aE)

include (trivial) QED corrections a ~ a2

® NLO:V — V —4rae2/q? single potential photon exchange suppressed by
a/v~a/v~u

® NNLO:¢cy — ¢ — 2630&/7‘(‘
® NNLO: double potential photon exchange (a/v)? ~ v?
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A3

04 +

04 -

ﬂinnllﬂ

Us=40 GeV-

Eps=V's —2 mps
LL
NLL
NNLL S
_________ 80 GeV
A 11s=60 GeV
7 115=40 GeV -
- 7 / ................. us=15 GeV
e
- Z 0 1 2 ; :
Eps=Vs —2 mps

variation of soft scale:

2(my/E2 + T2)1/2

Hs

mpg = 175 GeV
I'sr = 1.4GeV
purp = 20GeV

® big improvement, as seen
previously [Hoang, Manohar,
Stewart, Teubner]

® problem for small scales only
due to missing out multiple
insertions — can be recified

® NLL and NNLL bands do not
overlap

® this scale dependence is not a
reliable estimate for the theo-
retical error
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A3

04 -

Einnllﬂ

up=100 GeV -

un=175 GeV

Up=250 GeV -

Eps=Vs ~2 mps

variation of hard scale:
pp o~ m

® larger than soft scale
dependence

® NLL and NNLL bands now do
overlap

QED corrections:

® shift dm¢ ~ 300 MeV

® at this level even small correc-
tions are important
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A3

future improvements

needed: ¢; fully NNLL

ultrasoft effects (retardation effects)

AN
v

® due to chromoelectric dipole operator 7 - E
® NNNLO effects a2 (NNLL part o In a5 already included)
® potentially particularly important: a? ~ a2as(pus)

full NNNLO ......

effects due to the instability of top
® electroweak effects are important at this level aeq, ~ a?
® E — E +iI't is not correct at NNLO
® the whole concept of o(eTe™ — tt) breaks down

more exclusive quantities

Top 2006 — p. 13/2



unstable particles

A3

® Strictly speaking, it does not make sense to talk about o(eTe™ — tt) (or any cross
section with an unstable particle in the final state).

® for threshold scan, ém: < T'¢, thus
olete™ = tt) > o(ete™ - WTW=bb) — o(ete™ — f1fafsfabb)

® QCD and electroweak effects

w
t . ’% plus QED radiation from all charged

MM@’ E i particles (also incoming ete™)

® clectroweak effects are important! partially computed [Hoang, Reisser]
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m ]
3 basic problem

o P> \—1 1 1 1

top quark propagator (E — m) scalesas —— ~ —— ~ ——
® the width T'; ~ maey is a LO effect [Fadin, Khoze]
1 . 1
E—-Z-  E- £ 4ily
Coulomb singularity v — 0 propagator pole I' — 0

resum (as/v)™ (potential gluon exchange) resum (I'/m)™ (self-energy insertions)
systematic expansion in o and v systematic expansion in cand I’
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basic solution

use effective theory methods (again!) to systematically expand in T'/m
[Chapovsky, Khoze, AS, Stirling]

identify relevant modes (depends on details of observable) — asymptotic
expansion [Beneke, Chapovsky, AS, Zanderighi]

integrate out ‘unwanted’ modes — tower of effective theories (Unstable Particle
Effective Theory)

hard effects correspond to factorizable corrections
non-factorizable corrections due to still dynamical modes

this is neither a “quick-fix” nor a “free lunch”, it is a method to identify the minimal
amount of calculation to be done for a systematic expansion in the small
parameters (as for NRQCD)

gauge invariance is automatic since the split into the various contributions
respects gauge invariance
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A3

toy model
Lagrangian:
L= (Dug)!D o~ N6+ il +Xi Px —  Fiuw FH
1 — A
~ 3¢ @uA")? +yglx +u e - § (¢19) - Lo
Process:

v(p1)e” (p2) > ¢ — X
with s — M2 ~ MT. Use optical theorem and compute Im 7~
scales: decay time 1/M, lifetime 1/T" > 1/M
expandin aand § = (s — M?2)/M? ~T/M ~ «
fermions: SCET; scalar (higgs): H'Q"ET
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modes

Soft-Collinear Effective Theory + Heavy “Quark” Effective Theory
fermions higgs
p* = (nyp) = + (n—p) - +po. g" = Mot +kH;  gT =g — vH(qu)
ni =0, nyn_ =2 vt = (¢ +45) /5, v =1
hard: p~M hard: k* ~ M
(u)soft: p~ M soft: kH ~ 6

collinear: p, ~ M2 nip~ M; n_p~ M§

®O@®
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A3

effective theory

underlying
theory

integrate out
hard modes

effective
theory

£(¢h7 Cbc; (155)

dynamical modes:

hard, collinear, soft

factorizable non-factorizable
corrections corrections

N

L = Z Cn On ¢c;¢s

dynamical modes:

collinear, soft

Top 2006 — p. 19/2



A3

effective lagrangian

The effective Lagrangian for the NLO line shape:

1 . , A . iD? A2
Leg = —ZFﬁ Fepw + 2M ¢ (Z(vDs) — 5) bv + 2M ¢}, ( 2;;; + 8M> o
— . . — . (
+ ¢s’dps¢s + st aXs + w'n— (Zn—D +ECT lDCT) "Pn—
’I’L_|_DC

*

yy* B

+ C (y ¢v'lZn—Xn—|— + y* ¢:£)2n—|—¢n—) + M (lzn—Xn—i—) (Xn+¢n—) 4+ ...

Matching coefficients (contain hard effects)
® A=(5—M?2)/M=aAD +a2A®) 4. —Q—

In the pole scheme: A = —iT"
® C=14aC® 4 ., :}2
® B=1+aBW 4 ... ><
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A3

matching

S

Consider self-energy diagrams + higher orders

split self-energy into hard and soft part TI(s) = I1; (s) + I1s(s) and expand the hard part
of the self energy 11, (s) = M2 S akstmi(k:

11(1,9) (gauge independent) — A1) (LO, Propagator)
11(1.1) (gauge dependent) — C(1) (NLO)
11(1,2) (gauge dependent) — B(1) (NNLO)

11(2,0) and 1110 11(1,1) (separately gauge dependent) — A(2) (NLO, gauge
independent)

ITs (gauge dependent) — diagram in effective theory (NLO)
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matching

Matching of C (in MS scheme)

Matching of B at order « (contributes at NNLO)

e Y TT - X

A 7

gauge dependence cancels

=
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A3

results

Forward scattering amplitude at NLO:

i T =i T x

1 [A(l)] A(Z) D
j i : : >< 20( = 8DM 2D 21\2r>
(1) _ . 7(0) g (—2D\
S, }N;< >M;< i =iTOg (SP)
2 52
= - = +4+ T)
: s A
where >=< =70 = % with D = /s — M — 25

poles 1 /e cancel when adding soft and hard contributions (up to initial state collinear
singularity)
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A3

results

Partonic cross section for M = 100 GeV as a function of /s.
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nant to off-resonant cross section
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A3

towards xx near threshold

® more realistic processes:
® higgs — fermion (¢) : H'Q"ET — HQET
® higgs — gauge boson (W, Z) . With p# = Mv* + k* we get
p? —EM? = (1 — §)M? + 2M (vk) + k? and the propagator:

e (e 1 — ) o T (g )
p2 —m2 \ Y p2—eM2)  oM@k) - 0 U7

massive field, 3 polarizations, gauge invariant [Beneke, Kauer, AS, Zanderighi]

® pair production near threshold tt; W+W — : HQET — NRQ(C/E)D.
Due to potential gluons/photons (vk) ~ k* since ki, ~ (Mv?, mv)

® additional operators, for tt e.g. erer, x v
® more exclusive final states: expand also phase-space integrals

® resummation of log(I"/M) via standard RGE techniques
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conclusions

the theory for tt production near threshold is in good shape

but the usual statement ém: ~ 100MeV for ILC relies on further theoretical
progress (and the patience to actually do a threshold scan!!)

® full NNLL !!
® at least ultrasoft (if not full) NNNLO
® fully take into account instability of top quark

more exclusive final states ?
tools are set up, but a lot of (tedious) additional work required

this is one of the rare problems that is very fascinating from a theoretical point of
view and extremely relevant from an experimental point of view
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