Uses of Multivariate Analysis Methods

Yann Coadou on behalf of the CDF and DØ collaborations

Simon Fraser University

International Workshop on Top Quark Physics University of Coimbra, Portugal, 12-15 January 2006

Outline

[Motivation](#page-2-0)

- [Tevatron top groups techniques](#page-2-0)
- [DØ single top group approaches](#page-2-0)
- [Dataset preparation](#page-6-0)
- 3 [Cut-based analysis](#page-7-0)

- **o** [Likelihood discriminants](#page-10-0)
- **•** [Neural networks](#page-11-0)
- **O** [Decision trees](#page-13-0)

5 [Summary and outlook](#page-19-0)

Single variable techniques

- **o** Cut-based **DO**
- **O** Template methods **DO**

Data is multivariate

- Relatively similar signal and background \Rightarrow simple cuts cannot separate them
- Few events \Rightarrow use all information available to keep as many signal events as possible

- Relatively similar signal and background \Rightarrow simple cuts cannot separate them
- Few events \Rightarrow use all information available to keep as many signal events as possible

Illustration: techniques used in $D\emptyset$ single top group

- **a** Likelihood discriminants
- **O** Neural networks
- Decision trees
- Boosted decision trees

Datasets preparation

Advanced techniques are useless if inputs are not correct

• key to analysis performance

Most important: check models (bkg and/or signal) describe data

- **o** overall normalization **variables** shapes
	-

Cut-based analysis

- Reference for any "advanced" technique
- Example: DØ single top search

Cut-based analysis

- Reference for any "advanced" technique
- Example: DØ single top search

Random grid search

- Optimal cut (minimizes expected limit) on all variables
- **Combine sets of variables and** re-optimize
- Select set yielding lowest expected limit
- Set limits by counting events

Multivariate analysis methods

[Dataset preparation](#page-6-0)

[Cut-based analysis](#page-7-0)

4 [Multivariate analysis methods](#page-9-0)

- [Likelihood discriminants](#page-10-0)
- **•** [Neural networks](#page-11-0)
- **•** [Decision trees](#page-13-0)

5 [Summary and outlook](#page-19-0)

Likelihood discriminants

Likelihood for a vector of measurements $\vec{x} = x_i$

$$
\mathcal{L}(\vec{x}) = \frac{P_{signal}(\vec{x})}{P_{signal}(\vec{x}) + P_{background}(\vec{x})}
$$

• Probability Density Functions:

$$
\mathcal{P}(\vec{x}) = \prod_{i}^{N_{variables}} P(x_i)
$$

$$
(x_i) = normalized \ x_i \ \text{variable}
$$

 \bullet $\mathcal L$ close to 0 for background and 1 for signal

Neural networks **M.**, (jet1,

p_{2} (tag1) **s** ∆**R (jet1,jet2) M (W,tag1) M (W,best)** $cos(1, Q)$ $p - (notb)$ $p - (notb)$ **p**₊ (jet1,j **M (alljets)**

MultiLayer Perceptron

- **MLPFit implementation**
- Input layer nodes: variables x_i
- **•** Hidden layer nodes:

$$
n_k = \frac{1}{1 + \exp^{-\sum w_{ik}x_i}}
$$

• Output node:
$$
O = \sum w_k n_k
$$

$$
\sum_{n=1}^{N}
$$

Training method

- Initialize weights, minimize error function on training sample, update weights \Rightarrow first epoch
- Repeat procedure. After each epoch, apply NN on independent testing sample. Stop training when testing error increases (avoid overtraining)

Neural networks

Decision trees

- Machine learning technique, widely used in social sciences
- **•** Idea: recover events that fail criteria in cut-based analysis

\bullet Start with all events $=$ first node

- sort all events by each variable
- **•** for each variable, find splitting value with best separation between two children (mostly signal in one, mostly background in the other)
- **•** select variable and splitting value with best separation, produce two branches with corresponding events ((F)ailed and (P)assed cut)
- **•** Repeat recursively on each node
- \bullet Splitting stops: terminal node = leaf

• Run testing events and data through tree to derive limits DT output $=$ leaf purity

Ref: Breiman et al, "Classification and Regression Trees", Wadsworth (1984)

Tree construction parameters

Normalization of signal and background before training

• same total weight for signal and background events

Selection of splits

- list of questions (variable_i $> cut_i$?)
- goodness of split

Decision to stop splitting (declare a node terminal)

- **o** minimum leaf size
- **•** insufficient improvement from splitting

Assignment of terminal node to a class

- \bullet signal leaf if purity > 0.5
- **•** background otherwise

Splitting a node

Impurity $i(t)$

- maximum for equal mix of signal and background
- \bullet symmetric in p_{signal} and **P**background
- Decrease of impurity for split s of node t into children t_1 and t_R (goodness of split): $\Delta i(s,t) = i(t) - p_l \cdot i(t_l) - p_R \cdot i(t_R)$
- Aim: find split s^* such that:

$$
\Delta i(s^*,t) = \max_{s \in \{\text{splits}\}} \Delta i(s,t)
$$

• Maximizing $\Delta i(s,t) \equiv$ minimizing overall tree impurity

- **•** minimal for node with either signal only or background only
- strictly concave ⇒ reward purer nodes

Examples

$$
Gini = 1 - \sum_{i=s,b} p_i^2 = \frac{2sb}{(s+b)^2}
$$

entropy = $-\sum_{i=s,b} p_i \log p_i$

Decision tree output

• Followed same training strategy as NN analysis (different trees for different backgrounds)

Advantages

- DT has human readable structure (no black box)
- **•** Training is fast
- **O** Deals with discrete variables
- No need to transform inputs
- Resistant to irrelevant variables

Limitations

- Piecewise nature of output
-

Boosting a decision tree

Boosting

- Recent technique to improve performance of a weak classifier
- Recently used on decision trees in HEP by GLAST and MiniBooNE (Nucl. Instrum. Meth. A 543, 577 (2005) [\[physics/0408124\]](http://arxiv.org/pdf/physics/0408124))
- Basic principal on DT:
	- train a tree T_k
	- minimize error function
	- T_{k+1} = modify(T_k)

AdaBoost algorithm

- Adaptive boosting
- **O** Check which events are misclassified by T_k
- Derive tree weight α_k
- Increase weight of misclassified events
- Train again to build T_{k+1}
- Boosted result of event *i*: $T(i) = \sum_{n=1}^{N_{\text{tree}}} \alpha_k T_k(i)$
- Averaging \Rightarrow dilutes piecewise nature of DT
- Usually improves performance

Ref: Freund and Schapire, "Experiments with a new boosting algorithm", in Machine Learning Proceedings of the Thirteenth International Conference, pp 148-156 (1996)
nn Coadou (SFU) — Uses of Multivariate Analysis Methods
TOP2006, Coimbra, 13 January 2006 Yann Coadou (SFU) — [Uses of Multivariate Analysis Methods](#page-0-0) TOP2006, Coimbra, 13 January 2006 14

Comparison

Summary and outlook

- Many different analysis techniques used by Tevatron top groups
	- single variable methods
	- multivariate approaches
- For all methods: need good inputs first
	- good reconstruction and identification of physics objects
	- realistic Monte Carlo events that describe data
- Advanced techniques useful for precision measurements, searches with small statistics
- Example: different techniques in DØ single top searches (likelihood discriminants, neural networks, decision trees, boosted decision trees)
- Ongoing:
	- improved results with more statistics and new strategies
	- **a** boosted decision tree results soon
	- superNN: combining results of multiple NN into one

